Publications of Caroline Gutjahr
Journal Article (46)
1.
Journal Article
246 (3), pp. 1256 - 1275 (2025)
Untargeted metabolomics reveals novel metabolites in Lotus japonicus roots during arbuscular mycorrhiza symbiosis. New Phytologist 2.
Journal Article
16 (1), 2025 (2025)
Ethylene promotes SMAX1 accumulation to inhibit arbuscular mycorrhiza symbiosis. Nature Communications 3.
Journal Article
15 (1), 10639 (2024)
Annexin- and calcium-regulated priming of legume root cells for endosymbiotic infection. Nature Communications 4.
Journal Article
7 (4), e202402599 (2024)
Mapping parental DMRs predictive of local and distal methylome remodeling in epigenetic F1 hybrids. Life science alliance 5.
Journal Article
5 (3), 100743 (2024)
The Transcription factor HSFA7b controls thermomemory at the shoot apical meristem by regulating ethylene biosynthesis and signaling in Arabidopsis. Plant Communications 6.
Journal Article
8, pp. 2142 - 2153 (2023)
Arbuscular mycorrhizal fungi heterokaryons have two nuclear populations with distinct roles in host–plant interactions. Nature Microbiology 7.
Journal Article
239 (6), pp. 2067 - 2075 (2023)
C-terminal conformational changes in SCF-D3/MAX2 ubiquitin ligase are required for KAI2-mediated signaling. New Phytologist 8.
Journal Article
235 (1), pp. 126 - 140 (2022)
KAI2 regulates seedling development by mediating light-induced remodelling of auxin transport. New Phytologist 9.
Journal Article
119 (11), e2112820119 (2022)
KARRIKIN UP-REGULATED F-BOX 1 (KUF1) imposes negative feedback regulation of karrikin and KAI2 ligand metabolism in Arabidopsis thaliana. Proceedings of the National Academy of Sciences of the United States of America 10.
Journal Article
109 (6), pp. 1559 - 1574 (2022)
KARRIKIN INSENSITIVE2 regulates leaf development, root system architecture and arbuscular-mycorrhizal symbiosis in Brachypodium distachyon. The Plant Journal 11.
Journal Article
5 (1), 126 (2022)
Structural and functional analyses explain Pea KAI2 receptor diversity and reveal stereoselective catalysis during signal perception. COMMUNICATIONS BIOLOGY 12.
Journal Article
13 (1), 477 (2022)
PHOSPHATE STARVATION RESPONSE transcription factors enable arbuscular mycorrhiza symbiosis. Nature Communications 13.
Journal Article
32 (1), pp. 228 - 236 (2022)
KAI2 promotes Arabidopsis root hair elongation at low external phosphate by controlling local accumulation of AUX1 and PIN2. Current Biology 14.
Journal Article
7 (12), 000666 (2021)
Acidovorax pan-genome reveals specific functional traits for plant beneficial and pathogenic plant-associations. Microbial Genomics 15.
Journal Article
69 (44), pp. 13173 - 13189 (2021)
Quantitative Mapping of Flavor and Pharmacologically Active Compounds in European Licorice Roots (Glycyrrhiza glabra L.) in Response to Growth Conditions and Arbuscular Mycorrhiza Symbiosis. Journal of Agricultural and Food Chemistry 16.
Journal Article
16 (1), e1840852 (2021)
MAX2-independent transcriptional responses to rac-GR24 in Lotus japonicus roots. Plant Signaling & Behavior 17.
Journal Article
16 (12), e1009249 (2020)
Lotus japonicus karrikin receptors display divergent ligand-binding specificities and organ-dependent redundancy. PLoS Genetics 18.
Journal Article
117 (35), pp. 21757 - 21765 (2020)
The karrikin signaling regulator SMAX1 controls Lotus japonicus root and root hair development by suppressing ethylene biosynthesis. Proceedings of the National Academy of Sciences of the United States of America 19.
Journal Article
583 (7815), pp. 271 - 276 (2020)
Extensive signal integration by the phytohormone protein network. Nature 20.
Journal Article
11, 63 (2020)
A Flexible, Low-Cost Hydroponic Co-Cultivation System for Studying Arbuscular Mycorrhiza Symbiosis. Frontiers in Plant Science 21.
Journal Article
10, 1184 (2019)
Ramf: An Open-Source R Package for Statistical Analysis and Display of Quantitative Root Colonization by Arbuscular Mycorrhiza Fungi. Frontiers in Plant Science 22.
Journal Article
15 (8), e1008327 (2019)
SMAX1/SMXL2 regulate root and root hair development downstream of KAI2-mediated signalling in Arabidopsis. PLoS Genetics 23.
Journal Article
95 (2), pp. 219 - 232 (2018)
The Lotus japonicus acyl-acyl carrier protein thioesterase FatM is required for mycorrhiza formation and lipid accumulation of Rhizophagus irregularis. The Plant Journal 24.
Journal Article
8 (7), e2786 (2018)
Tracking Lipid Transfer by Fatty Acid Isotopolog Profiling from Host Plants to Arbuscular Mycorrhiza Fungi. BIO-PROTOCOL 25.
Journal Article
217 (3), pp. 1240 - 1253 (2018)
Root type and soil phosphate determine the taxonomic landscape of colonizing fungi and the transcriptome of field-grown maize roots. New Phytologist 26.
Journal Article
6, e29107 (2017)
Lipid transfer from plants to arbuscular mycorrhiza fungi. eLife 27.
Journal Article
3 (6), 17073 (2017)
An N-acetylglucosamine transporter required for arbuscular mycorrhizal symbioses in rice and maize. Nature Plants 28.
Journal Article
21 (1), pp. 106 - 112 (2017)
Positive Gene Regulation by a Natural Protective miRNA Enables Arbuscular Mycorrhizal Symbiosis. Cell Host & Microbe 29.
Journal Article
26 (8), pp. 987 - 998 (2016)
A CCaMK-CYCLOPS-DELLA Complex Activates Transcriptiori of RAM1 to Regulate Arbuscule Branching. Current Biology 30.
Journal Article
350 (6267), pp. 1521 - 1524 (2015)
Rice perception of symbiotic arbuscular mycorrhizal fungi requires the karrikin receptor complex. Science 31.
Journal Article
112 (21), pp. 6754 - 6759 (2015)
Transcriptome diversity among rice root types during asymbiosis and interaction with arbuscular mycorrhizal fungi. Proceedings of the National Academy of Sciences of the United States of America 32.
Journal Article
10 (4), e0123422 (2015)
Full Establishment of Arbuscular Mycorrhizal Symbiosis in Rice Occurs Independently of Enzymatic Jasmonate Biosynthesis. PLOS ONE 33.
Journal Article
55 (11), pp. 1945 - 1953 (2014)
Lipid Droplets of Arbuscular Mycorrhizal Fungi Emerge in Concert with Arbuscule Collapse. Plant and Cell Physiology 34.
Journal Article
166 (1), pp. 281 - 292 (2014)
Auxin Perception Is Required for Arbuscule Development in Arbuscular Mycorrhizal Symbiosis. PLANT PHYSIOLOGY 35.
Journal Article
75 (1), pp. 117 - 129 (2013)
Two Lotus japonicus symbiosis mutants impaired at distinct steps of arbuscule development. The Plant Journal 36.
Journal Article
31 (4), pp. 325 - 330 (2013)
Mutation identification by direct comparison of whole-genome sequencing data from mutant and wild-type individuals using k-mers. Nature Biotechnology 37.
Journal Article
69 (5), pp. 906 - 920 (2012)
The half-size ABC transporters STR1 and STR2 are indispensable for mycorrhizal arbuscule formation in rice. The Plant Journal 38.
Journal Article
234 (3), pp. 639 - 646 (2011)
Root starch accumulation in response to arbuscular mycorrhizal colonization differs among Lotus japonicus starch mutants. Planta 39.
Journal Article
182 (4), pp. 829 - 837 (2009)
Glomus intraradices induces changes in root system architecture of rice independently of common symbiosis signaling. New Phytologist 40.
Journal Article
183 (1), pp. 53 - 61 (2009)
Presymbiotic factors released by the arbuscular mycorrhizal fungus Gigaspora margarita induce starch accumulation in Lotus japonicus roots. New Phytologist 41.
Journal Article
20 (11), pp. 2989 - 3005 (2008)
Arbuscular Mycorrhiza-Specific Signaling in Rice Transcends the Common Symbiosis Signaling Pathway. The Plant Cell 42.
Journal Article
49 (11), pp. 1659 - 1671 (2008)
Divergence of Evolutionary Ways Among Common sym Genes: CASTOR and CCaMK Show Functional Conservation Between Two Symbiosis Systems and Constitute the Root of a Common Signaling Pathway. Plant and Cell Physiology 43.
Journal Article
44 (1), pp. 163 - 170 (2007)
Changes in soil chemistry associated with the establishment of forest gardens on eroded, acidified grassland soils in Sri Lanka. Biology and Fertility of Soils 44.
Journal Article
9 (1), pp. 32 - 40 (2007)
GER1, a GDSL motif-encoding gene from rice is a novel early light- and jasmonate-induced gene. Plant Biology 45.
Journal Article
227 (2-4), pp. 211 - 222 (2006)
Acrylamide inhibits gravitropism and affects microtubules in rice coleoptiles. Protoplasma 46.
Journal Article
222 (4), pp. 575 - 585 (2005)
Cholodny-Went revisited: a role for jasmonate in gravitropism of rice coleoptiles. Planta Book Chapter (5)
47.
Book Chapter
Controlled Assays for Phenotyping the Effects of Strigolactone-Like Molecules on Arbuscular Mycorrhiza Development. In: STRIGOLACTONES: Methods and Protocols, pp. 157 - 177 (2021)
48.
Book Chapter
Bioassays for the Effects of Strigolactones and Other Small Molecules on Root and Root Hair Development. In: STRIGOLACTONES: Methods and Protocols, pp. 129 - 142 (2021)
49.
Book Chapter
Role of phytohormones in arbuscular mycorrhiza development. In: The Model Legume Medicago truncatula, p. 7.1.2 (Ed. de Bruijn, F.). Wiley (2019)
50.
Book Chapter
The Role of Strigolactones in Plant–Microbe Interactions. In: Strigolactones - Biology and Applications, pp. 121 - 142 (Eds. Koltai, H.; Prandi, C.). Springer, Cham (2019)