Publikationen von Caroline Gutjahr
Zeitschriftenartikel (41)
1.
Zeitschriftenartikel
Transcription factor HSFA7b controls thermomemory at the shoot apical meristem by regulating ethylene biosynthesis and signaling in Arabidopsis. Plant Communications, 100743 (2023)
2.
Zeitschriftenartikel
8, S. 2142 - 2153 (2023)
Arbuscular mycorrhizal fungi heterokaryons have two nuclear populations with distinct roles in host–plant interactions. Nature Microbiology 3.
Zeitschriftenartikel
239 (6), S. 2067 - 2075 (2023)
C-terminal conformational changes in SCF-D3/MAX2 ubiquitin ligase are required for KAI2-mediated signaling. New Phytologist 4.
Zeitschriftenartikel
235 (1), S. 126 - 140 (2022)
KAI2 regulates seedling development by mediating light-induced remodelling of auxin transport. New Phytologist 5.
Zeitschriftenartikel
119 (11), e2112820119 (2022)
KARRIKIN UP-REGULATED F-BOX 1 (KUF1) imposes negative feedback regulation of karrikin and KAI2 ligand metabolism in Arabidopsis thaliana. Proceedings of the National Academy of Sciences of the United States of America 6.
Zeitschriftenartikel
109 (6), S. 1559 - 1574 (2022)
KARRIKIN INSENSITIVE2 regulates leaf development, root system architecture and arbuscular-mycorrhizal symbiosis in Brachypodium distachyon. The Plant Journal 7.
Zeitschriftenartikel
5 (1), 126 (2022)
Structural and functional analyses explain Pea KAI2 receptor diversity and reveal stereoselective catalysis during signal perception. COMMUNICATIONS BIOLOGY 8.
Zeitschriftenartikel
13 (1), 477 (2022)
PHOSPHATE STARVATION RESPONSE transcription factors enable arbuscular mycorrhiza symbiosis. Nature Communications 9.
Zeitschriftenartikel
32 (1), S. 228 - 236 (2022)
KAI2 promotes Arabidopsis root hair elongation at low external phosphate by controlling local accumulation of AUX1 and PIN2. Current Biology 10.
Zeitschriftenartikel
7 (12), 000666 (2021)
Acidovorax pan-genome reveals specific functional traits for plant beneficial and pathogenic plant-associations. Microbial Genomics 11.
Zeitschriftenartikel
69 (44), S. 13173 - 13189 (2021)
Quantitative Mapping of Flavor and Pharmacologically Active Compounds in European Licorice Roots (Glycyrrhiza glabra L.) in Response to Growth Conditions and Arbuscular Mycorrhiza Symbiosis. Journal of Agricultural and Food Chemistry 12.
Zeitschriftenartikel
16 (1), e1840852 (2021)
MAX2-independent transcriptional responses to rac-GR24 in Lotus japonicus roots. Plant Signaling & Behavior 13.
Zeitschriftenartikel
16 (12), e1009249 (2020)
Lotus japonicus karrikin receptors display divergent ligand-binding specificities and organ-dependent redundancy. PLoS Genetics 14.
Zeitschriftenartikel
117 (35), S. 21757 - 21765 (2020)
The karrikin signaling regulator SMAX1 controls Lotus japonicus root and root hair development by suppressing ethylene biosynthesis. Proceedings of the National Academy of Sciences of the United States of America 15.
Zeitschriftenartikel
583 (7815), S. 271 - 276 (2020)
Extensive signal integration by the phytohormone protein network. Nature 16.
Zeitschriftenartikel
11, 63 (2020)
A Flexible, Low-Cost Hydroponic Co-Cultivation System for Studying Arbuscular Mycorrhiza Symbiosis. Frontiers in Plant Science 17.
Zeitschriftenartikel
10, 1184 (2019)
Ramf: An Open-Source R Package for Statistical Analysis and Display of Quantitative Root Colonization by Arbuscular Mycorrhiza Fungi. Frontiers in Plant Science 18.
Zeitschriftenartikel
15 (8), e1008327 (2019)
SMAX1/SMXL2 regulate root and root hair development downstream of KAI2-mediated signalling in Arabidopsis. PLoS Genetics 19.
Zeitschriftenartikel
95 (2), S. 219 - 232 (2018)
The Lotus japonicus acyl-acyl carrier protein thioesterase FatM is required for mycorrhiza formation and lipid accumulation of Rhizophagus irregularis. The Plant Journal 20.
Zeitschriftenartikel
8 (7), e2786 (2018)
Tracking Lipid Transfer by Fatty Acid Isotopolog Profiling from Host Plants to Arbuscular Mycorrhiza Fungi. BIO-PROTOCOL 21.
Zeitschriftenartikel
217 (3), S. 1240 - 1253 (2018)
Root type and soil phosphate determine the taxonomic landscape of colonizing fungi and the transcriptome of field-grown maize roots. New Phytologist 22.
Zeitschriftenartikel
6, e29107 (2017)
Lipid transfer from plants to arbuscular mycorrhiza fungi. eLife 23.
Zeitschriftenartikel
3 (6), 17073 (2017)
An N-acetylglucosamine transporter required for arbuscular mycorrhizal symbioses in rice and maize. Nature Plants 24.
Zeitschriftenartikel
21 (1), S. 106 - 112 (2017)
Positive Gene Regulation by a Natural Protective miRNA Enables Arbuscular Mycorrhizal Symbiosis. Cell Host & Microbe 25.
Zeitschriftenartikel
26 (8), S. 987 - 998 (2016)
A CCaMK-CYCLOPS-DELLA Complex Activates Transcriptiori of RAM1 to Regulate Arbuscule Branching. Current Biology 26.
Zeitschriftenartikel
350 (6267), S. 1521 - 1524 (2015)
Rice perception of symbiotic arbuscular mycorrhizal fungi requires the karrikin receptor complex. Science 27.
Zeitschriftenartikel
112 (21), S. 6754 - 6759 (2015)
Transcriptome diversity among rice root types during asymbiosis and interaction with arbuscular mycorrhizal fungi. Proceedings of the National Academy of Sciences of the United States of America 28.
Zeitschriftenartikel
55 (11), S. 1945 - 1953 (2014)
Lipid Droplets of Arbuscular Mycorrhizal Fungi Emerge in Concert with Arbuscule Collapse. Plant and Cell Physiology 29.
Zeitschriftenartikel
166 (1), S. 281 - 292 (2014)
Auxin Perception Is Required for Arbuscule Development in Arbuscular Mycorrhizal Symbiosis. PLANT PHYSIOLOGY 30.
Zeitschriftenartikel
75 (1), S. 117 - 129 (2013)
Two Lotus japonicus symbiosis mutants impaired at distinct steps of arbuscule development. The Plant Journal 31.
Zeitschriftenartikel
31 (4), S. 325 - 330 (2013)
Mutation identification by direct comparison of whole-genome sequencing data from mutant and wild-type individuals using k-mers. Nature Biotechnology 32.
Zeitschriftenartikel
69 (5), S. 906 - 920 (2012)
The half-size ABC transporters STR1 and STR2 are indispensable for mycorrhizal arbuscule formation in rice. The Plant Journal 33.
Zeitschriftenartikel
234 (3), S. 639 - 646 (2011)
Root starch accumulation in response to arbuscular mycorrhizal colonization differs among Lotus japonicus starch mutants. Planta 34.
Zeitschriftenartikel
182 (4), S. 829 - 837 (2009)
Glomus intraradices induces changes in root system architecture of rice independently of common symbiosis signaling. New Phytologist 35.
Zeitschriftenartikel
183 (1), S. 53 - 61 (2009)
Presymbiotic factors released by the arbuscular mycorrhizal fungus Gigaspora margarita induce starch accumulation in Lotus japonicus roots. New Phytologist 36.
Zeitschriftenartikel
20 (11), S. 2989 - 3005 (2008)
Arbuscular Mycorrhiza-Specific Signaling in Rice Transcends the Common Symbiosis Signaling Pathway. The Plant Cell 37.
Zeitschriftenartikel
49 (11), S. 1659 - 1671 (2008)
Divergence of Evolutionary Ways Among Common sym Genes: CASTOR and CCaMK Show Functional Conservation Between Two Symbiosis Systems and Constitute the Root of a Common Signaling Pathway. Plant and Cell Physiology 38.
Zeitschriftenartikel
44 (1), S. 163 - 170 (2007)
Changes in soil chemistry associated with the establishment of forest gardens on eroded, acidified grassland soils in Sri Lanka. Biology and Fertility of Soils 39.
Zeitschriftenartikel
9 (1), S. 32 - 40 (2007)
GER1, a GDSL motif-encoding gene from rice is a novel early light- and jasmonate-induced gene. Plant Biology 40.
Zeitschriftenartikel
227 (2-4), S. 211 - 222 (2006)
Acrylamide inhibits gravitropism and affects microtubules in rice coleoptiles. Protoplasma 41.
Zeitschriftenartikel
222 (4), S. 575 - 585 (2005)
Cholodny-Went revisited: a role for jasmonate in gravitropism of rice coleoptiles. Planta Buchkapitel (5)
42.
Buchkapitel
Controlled Assays for Phenotyping the Effects of Strigolactone-Like Molecules on Arbuscular Mycorrhiza Development. In: STRIGOLACTONES: Methods and Protocols, S. 157 - 177 (2021)
43.
Buchkapitel
Bioassays for the Effects of Strigolactones and Other Small Molecules on Root and Root Hair Development. In: STRIGOLACTONES: Methods and Protocols, S. 129 - 142 (2021)
44.
Buchkapitel
Role of phytohormones in arbuscular mycorrhiza development. In: The Model Legume Medicago truncatula, S. 7.1.2 (Hg. de Bruijn, F.). Wiley (2019)
45.
Buchkapitel
The Role of Strigolactones in Plant–Microbe Interactions. In: Strigolactones - Biology and Applications, S. 121 - 142 (Hg. Koltai, H.; Prandi, C.). Springer, Cham (2019)
46.
Buchkapitel
The Molecular Components of Nutrient Exchange in Arbuscular Mycorrhizal Interactions. In: Mycorrhizae: Sustainable Agriculture and Forestry, S. 37 - 59 (Hg. Siddiqui, Z.A.; Akhtar, M.S.; Futai, K.). Springer, Dordrecht (2008)
Editorial (4)
47.
Editorial
7, 130 (2019)
Editorial: Rhizosphere Functioning and Structural Development as Complex Interplay Between Plants, Microorganisms and Soil Minerals. Frontiers in Environmental Science 48.
Editorial
28 (24), S. R1400 - R1403 (2018)
Symbiosis: Plasmodesmata Link Root-Nodule Organogenesis with Infection. Current Biology 49.
Editorial
44, S. III - VI (2018)
Nothing in plant-biotic interactions makes sense. Current Opinion in Plant Biology 50.
Editorial
27 (11), S. R420 - R423 (2017)
Cell Biology: Control of Partner Lifetime in a Plant-Fungus Relationship. Current Biology