Main Focus

I am a plant molecular biologist with a focus on plant development and symbiosis. I am motivated by the idea that basic research, like understanding how symbiotic transport works, can eventually have a real-life impact. I have always been fascinated by arbuscular mycorrhizal (AM) symbiosis, especially by how nutrients move between the symbionts and how this may be regulated. It is surprising how these tiny interactions can have such a big impact on plant health. My goal is to investigate how the presence and activity of transporters are regulated, integrating developmental biology approaches with plant-microbe interactions to deepen our understanding of these processes. For more information, visit my personal profile.


Curriculum Vitae

Professional Experience

2025.02 – present: Postdoctoral scientist, laboratory of Prof. Dr. Caroline Gutjahr, Root Biology and Symbiosis, Max Planck Institute of Molecular Plant Physiology, Germany

2023.02 – 2025.01: Postdoctoral researcher, laboratory of Prof. Dr. Roman Ulm, Department of Plant Sciences, University of Geneva, Switzerland

2018.10 – 2023.01: PhD in Biochemistry and Biotechnology, laboratory of Prof. Dr. Lieven De Veylder, VIB Center for Plant Systems Biology, Ghent University, Belgium

2016.07 – 2018.06: Master’s in Crop Genetics and Breeding, laboratory of Prof. Dr. Jianqing Zhu, Rice Research Institute, Sichuan Agricultural University, China

2017.10 – 2018.02: Visiting Graduate, laboratory of Prof. Dr. Yonghong Wang, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, China

2012.09 – 2016.06: Bachelor’s in Plant Science and Technology, laboratory of Prof. Dr. Rongjun Chen, Faculty of Agronomy, Sichuan Agricultural University, China

Publications

  1. Liang, Y., Heyman, J., Lu, R., and De Veylder, L. (2023) Evolution of wound-activated regeneration pathways in the plant kingdomEur. J. Cell Biol. 102: 151291.
  2. Willems, A., Liang, Y., Heyman, J., Depuydt, T., Eekhout, T., Canher, B., Van den Daele, H., Vercauteren, I., Vandepoele, K., and De Veylder, L. (2022) Plant lineage-specific PIKMIN1 drives APC/CCCS52A2 E3-ligase activity-dependent cell divisionPlant Physiol. 191: 1574-1595.
  3. Liang, Y., Heyman, J., Xiang, Y., Vandendriessche, W., Canher, B., Goeminne, G., and De Veylder, L. (2022) The wound-activated ERF15 transcription factor drives Marchantia polymorpha regeneration by activating an oxylipin biosynthesis feedback loopSci. Adv. 8: eabo7737.
  4. Su, Y., Li, L., Farooq, M.U., Huang, X., Zheng, T., Zhang, Y.J., Ei, H.H., Panhwar, F.H., Tang, Z., Zeng, R., Liang, Y., Ye, X., Jia, X., and Zhu, J. (2021) Rescue effects of Se-enriched rice on physiological and biochemical characteristics in cadmium poisoning miceEnviron. Sci. Pollut. Res. Int. 28: 20023-20033.
  5. Ei, H.H., Zheng, T., Farooq, M.U., Zeng, R., Su, Y., Zhang, Y., Liang, Y., Tang, Z., Ye, X., Jia, X., and Zhu, J. (2020) Impact of selenium, zinc and their interaction on key enzymes, grain yield, selenium, zinc concentrations, and seedling vigor of biofortified riceEnviron. Sci. Pollut. Res. Int. 27: 16940-16949.
  6. Zeng, R., Farooq, M.U., Zhang, G., Tang, Z., Zheng, T., Su, Y., Hussain, S., Liang, Y., Ye, X., Jia, X., and Zhu, J. (2020) Dissecting the potential of selenoproteins extracted from selenium-enriched rice on physiological, biochemical and anti-ageing effects in vivoBiol. Trace Elem. Res. 196: 119-130.
  7. Liang, Y., Su, Y., Li, L., Huang, X., Panhwar, F.H., Zheng, T., Tang, Z., Ei, H.H., Farooq, M.U., Zeng, R., Zhang, Y., Ye, X., Jia, X., Zheng, L., and Zhu, J. (2019) Quick selenium accumulation in the selenium-rich rice and its physiological responses in changing selenium environmentsBMC Plant Biol. 19: 559.
  8. Farooq, M.U., Tang, Z., Zheng, T., Asghar, M.A., Zeng, R., Su, Y., Ei, H.H., Liang, Y., Zhang, Y., Ye, X., Jia, X., and Zhu, J. (2019) Cross-talk between cadmium and selenium at elevated cadmium stress determines the fate of selenium uptake in riceBiomolecules 9: 247.
  9. Zeng, R.*, Liang, Y.*, Farooq, M.U.*, Zhang, Y., Ei, H.H., Tang, Z., Zheng, T., Su, Y., Ye, X., Jia, X., and Zhu, J. (2019) Alterations in transcriptome and antioxidant activity of naturally aged mice exposed to selenium-rich riceEnviron. Sci. Pollut. Res. Int. 26: 17834-17844. (*equal contribution)
  10. Farooq, M.U., Tang, Z., Zeng, R., Liang, Y., Zhang, Y., Zheng, T., Ei, H.H., Ye, X., Jia, X., and Zhu, J. (2019) Accumulation, mobilization, and transformation of selenium in rice grain provided with foliar sodium selenite. J. Sci. Food Agric. 99: 2892-2900.
  11. Liang, Y.*, Farooq, M.U.*, Zeng, R.*, Tang, Z., Zhang, Y., Zheng, T., Ei, H.H., Ye, X., Jia., X., and Zhu, J. (2018) Breeding of selenium rich red glutinous rice, protein extraction and analysis of the distribution of selenium in grainInt. J. Agric. Biol. 20: 1005-1011. (*equal contribution)
  12. Liang, Y., Farooq, M.U., Hu, Y., Tang, Z., Zhang, Y., Zeng, R., Zheng, T., Ei, H.H., Ye, X., Jia, X., and Zhu, J. (2018) Study on stability and antioxidant activity of red anthocyanidin glucoside rich hybrid rice, its nutritional and physicochemical characteristicsFood Sci. Technol. Res. 24: 687-696.
Go to Editor View