Zeitschriftenartikel (10)

  1. 1.
    Armarego-Marriott, T.; Kowalewska, L.; Burgos, A.; Fischer, A.; Thiele, W.; Erban, A.; Strand, D.; Kahlau, S.; Hertle, A. P.; Kopka, J. et al.; Walther, D.; Reich, Z.; Schöttler, M. A.; Bock, R.: Highly Resolved Systems Biology to Dissect the Etioplast-to-Chloroplast Transition in Tobacco Leaves. Plant Physiology 180 (1), S. 654 - 681 (2019)
  2. 2.
    Liu, M.-Y.; Burgos, A.; Zhang, Q.; Tang, D.; Shi, Y.; Ma, L.; Yi, X.; Ruan, J.: Analyses of transcriptome profiles and selected metabolites unravel the metabolic response to NH4+ and NO3− as signaling molecules in tea plant (Camellia sinensis L.). Scientia Horticulturae 218, S. 293 - 303 (2017)
  3. 3.
    Liu, M.-Y.; Burgos, A.; Ma, L.; Zhang, Q.; Tang, D.; Ruan, J.: Lipidomics analysis unravels the effect of nitrogen fertilization on lipid metabolism in tea plant (Camellia sinensis L.). BMC Plant Biology 17 (1), 165 (2017)
  4. 4.
    Lauxmann, M.; Annunziata, M. G.; Brunoud, G.; Wahl, V.; Koczut, A.; Burgos, A.; Olas, J. J.; Maximova, E.; Abel, C.; Schlereth, A. et al.; Soja, A. M.; Bläsing, O. E.; Lunn, J. E.; Vernoux, T.; Stitt, M.: Reproductive failure in Arabidopsis thaliana under transient carbohydrate limitation: flowers and very young siliques are jettisoned and the meristem is maintained to allow successful resumption of reproductive growth. Plant, Cell and Environment 39 (4), S. 745 - 767 (2016)
  5. 5.
    Tenenboim, H.; Burgos, A.; Willmitzer, L.; Brotman, Y.: Using lipidomics for expanding the knowledge on lipid metabolism in plants. Biochimie 130, S. 91 - 96 (2016)
  6. 6.
    Bromke, M. A.; Hochmuth, A.; Tohge, T.; Fernie, A. R.; Giavalisco, P.; Burgos, A.; Willmitzer, L.; Brotman, Y.: Liquid chromatography high-resolution mass spectrometry for fatty acid profiling. The Plant Journal 81 (3), S. 529 - 536 (2015)
  7. 7.
    Pant, B. D.; Burgos, A.; Pant, P.; Cuadros-Inostroza, A. C.; Willmitzer, L.; Scheible, W.-R.: The transcription factor PHR1 regulates lipid remodeling and triacylglycerol accumulation in Arabidopsis thaliana during phosphorus starvation. Journal of Experimental Botany 66 (7), S. 1907 - 1918 (2015)
  8. 8.
    Mettler, T.; Mühlhaus, T.; Hemme, D.; Schöttler, M. A.; Rupprecht, J.; Idoine, A.; Veyel, D.; Pal, S. K.; Yaneva-Roder, L.; Winck, F. V. et al.; Sommer, F.; Vosloh, D.; Seiwert, B.; Erban, A.; Burgos, A.; Arvidsson, S.; Schönfelder, S.; Arnold, A.; Günther, M.; Krause, U.; Lohse, M.; Kopka, J.; Nikoloski, Z.; Mueller-Roeber, B.; Willmitzer, L.; Bock, R.; Schroda, M.; Stitt, M.: Systems Analysis of the Response of Photosynthesis, Metabolism, and Growth to an Increase in Irradiance in the Photosynthetic Model Organism Chlamydomonas reinhardtii. The Plant Cell 26 (6), S. 2310 - 2350 (2014)
  9. 9.
    Zauber, H.; Burgos, A.; Garapati, P.; Schulze, W. X.: Plasma membrane lipid-protein interactions affect signaling processes in sterol-biosynthesis mutants in Arabidopsis thaliana. Frontiers in Plant Science 5 (2014)
  10. 10.
    Burgos, A.; Szymanski, J.; Seiwert, B.; Degenkolbe, T.; Hannah, M. A.; Giavalisco, P.; Willmitzer, L.: Analysis of short-term changes in the Arabidopsis thaliana glycerolipidome in response to temperature and light. The Plant Journal 66 (4), S. 656 - 668 (2011)
loading content
Zur Redakteursansicht