Publikationen von Z. Razaghi-Moghadam
Alle Typen
Zeitschriftenartikel (19)
1.
Zeitschriftenartikel
Razaghi-Moghadam, Z. & Nikoloski, Z. Flux-sum coupling analysis of metabolic network models. PLOS Computational Biology 21, (2025).
, 2.
Zeitschriftenartikel
Razaghi-Moghadam, Z., Soleymani Babadi, F. & Nikoloski, Z. Harnessing the optimization of enzyme catalytic rates in engineering of metabolic phenotypes. PLOS Computational Biology 20, (2024).
3.
Zeitschriftenartikel
Razaghi-Moghadam, Z. & Nikoloski, Z. Machine learning of metabolite-protein interactions from model-derived metabolic phenotypes. NAR: genomics and bioinformatics 6, (2024).
, 4.
Zeitschriftenartikel
Razaghi-Moghadam, Z. & Nikoloski, Z. Prediction and integration of metabolite-protein interactions with genome-scale metabolic models. Metabolic Engineering 82, 216–224 (2024).
, 5.
Zeitschriftenartikel
Wendering, P., Razaghi-Moghadam, Z., , , , , Nikoloski, Z., & Optogenetic control of Cdc48 for dynamic metabolic engineering in yeast. Metabolic Engineering 79, 97–107 (2023).
, , 6.
Zeitschriftenartikel
Razaghi-Moghadam, Z. & Nikoloski, Z. Maximizing multi-reaction dependencies provides more accurate and precise predictions of intracellular fluxes than the principle of parsimony. PLoS Computational Biology 19, (2023).
, 7.
Zeitschriftenartikel
Razaghi-Moghadam, Z., & Prediction of metabolite-protein interactions based on integration of machine learning and constraint-based modeling. Bioinformatics advances 3, (2023).
, 8.
Zeitschriftenartikel
Wendering, P., Arend, M., Razaghi-Moghadam, Z. & Nikoloski, Z. Data integration across conditions improves turnover number estimates and metabolic predictions. Nature Communications 14, (2023).
9.
Zeitschriftenartikel
Hashemi, S., Razaghi-Moghadam, Z., & Nikoloski, Z. Relative flux trade-offs and optimization of metabolic network functionalities. Computational and Structural Biotechnology Journal 20, 3963–3971 (2022).
10.
Zeitschriftenartikel
Razaghi-Moghadam, Z. & Nikoloski, Z. Identification of flux trade-offs in metabolic networks. Scientific Reports 11, (2021).
, 11.
Zeitschriftenartikel
Razaghi-Moghadam, Z. & Nikoloski, Z. Maximization of non-idle enzymes improves the coverage of the estimated maximal in vivo enzyme catalytic rates in Escherichia coli. Bioinformatics 37, 3848–3855 (2021).
, 12.
Zeitschriftenartikel
Razaghi-Moghadam, Z. & Nikoloski, Z. GeneReg: a constraint-based approach for design of feasible metabolic engineering strategies at the gene level. Bioinformatics 37, 1717–1723 (2021).
13.
Zeitschriftenartikel
Razaghi-Moghadam, Z., Kopka, J. & Nikoloski, Z. Integration of relative metabolomics and transcriptomics time-course data in a metabolic model pinpoints effects of ribosome biogenesis defects on Arabidopsis thaliana metabolism. Scientific Reports 11, (2021).
, 14.
Zeitschriftenartikel
Razaghi-Moghadam, Z., Sokolowska, E., , Skirycz, A. & Nikoloski, Z. Combination of network and molecule structure accurately predicts competitive inhibitory interactions. Computational and Structural Biotechnology Journal 19, 2170–2178 (2021).
15.
Zeitschriftenartikel
Razaghi-Moghadam, Z. & Nikoloski, Z. Reaction lumping in metabolic networks for application with thermodynamic metabolic flux analysis. Scientific Reports 11, (2021).
, 16.
Zeitschriftenartikel
Razaghi-Moghadam, Z. & Nikoloski, Z. Supervised Learning of Gene Regulatory Networks. Current Protocols in Plant Biology 5, (2020).
17.
Zeitschriftenartikel
Razaghi-Moghadam, Z., , & Systems genetics of nonsyndromic orofacial clefting provides insights into its complex aetiology. European Journal of Human Genetics 27, 226–234 (2019).
18.
Zeitschriftenartikel
Razaghi-Moghadam, Z. CAMIRADA: Cancer microRNA association discovery algorithm, a case study on breast cancer. Journal of biomedical informatics 94, (2019).
, & 19.
Zeitschriftenartikel
Razaghi-Moghadam, Z., , , & A systematic survey of centrality measures for protein-protein interaction networks. BMC Systems Biology 12, (2018).
, , Konferenzbeitrag (1)
20.
Konferenzbeitrag
Razaghi-Moghadam, Z., & ParaKavosh: A Parallel Algorithm for Finding Biological Network Motifs. in 2020 11th International Conference on Information and Knowledge Technology (IKT) 45–49 (2020). doi:10.1109/IKT51791.2020.9345641