Inositol pyrophosphates - Regulators of plant root endosymbiosis?

Februar 2025

  • Datum: 12.02.2025
  • Uhrzeit: 14:00 - 15:00
  • Vortragende(r): Martina Ried-Lasi
  • IPB Leibnitz Institute of Plant Biochemistry, Halle, Germany
  • Ort: Zentralgebäude
  • Raum: Seminar Raum
  • Gastgeber: Caroline Gutjahr

Abstract

K. Raj1, V. Gaugler2, H. Jessen3, G. Schaaf2, M. K. Ried-Lasi1

1 Leibniz Institute of Plant Biochemistry, Molecular Signal Processing, Halle a. d. Saale, Germany

2 University of Bonn, INRES, Bonn, Germany

3 Albert-Ludwigs-University, Institute of Organic Chemistry, Freiburg, Germany

Tight regulation of nutrient homeostasis is vital for every cell. Plants have evolved elaborate systems to sense and signal extracellular and intracellular e.g. phosphate levels and to regulate cellular nutrient concentrations. Most land plants establish Arbuscular Mycorrhiza (AM) with phosphate-acquiring fungi, and selected members of the Fabales, Fagales, Cucurbitales and Rosales engage in root nodule symbiosis with diazotrophic bacteria [1,2]. While many genes involved in symbiont perception and subsequent genetic reprogramming have been well characterized, the signalling hubs connecting symbiosis with nutrient homeostasis remain largely obscure. Plant phosphate homeostasis is regulated by inositol pyrophosphates (PP-InsPs). PP-InsPs are low abundant high energy messengers that bind to SPX domains - selective high-affinity PP-InsP receptors – and mediate the interaction of SPX and PHR-like transcription factors, thereby regulating the expression of phosphate starvation-induced genes [3]. There is accumulating evidence that phosphate homeostasis and AM signalling are interconnected via SPX and PHR [4-7]. It is our goal to scrutinize the role of PP-InsP ligands and putative precursors during symbioses and nutrient homeostasis and thus to illuminate the interplay of these different plant strategies to overcome nutrient limitations.

References

1. M. Parniske (2008). Nat. Rev., 6, 763-775.

2. J. J. Doyle (2011). MPMI, 24, 1289-1295.

3. J.-Y. Jung, M. K. Ried, M. Hothorn, Y. Poirier (2017). Curr. Opin. Biotechnol., 49, 156-162

4. P. Wang, R. Snijders, W. Kohlen, J. Liu, T. Bisseling, E. Limpens (2021). Plant Cell., 33, 3470-3486

5. J. Shi, B. Zhao, S. Zheng, X. Zhang, X. Wang, W. Dong, Q. Xie, G. Wang, Y. Xiao, F. Chen, et al. (2021). Cell, 184, 5527–5540.

6. D. Das, M. Paries, K. Hobecker, M. Gigl, C. Dawid, H. M. Lam, J. Zhang, M. Chen, C. Gutjahr (2022). Nat. Commun., 12, 477

7. D. Liao, C. Sun, H. Liang, Y. Wang, X. Bian, C. Dong, X. Niu, M. Yang, G. Xu, A. Chen, S. Wu (2022). Plant Cell, 34, 4045-4065.

Zur Redakteursansicht