Media Library

Pimp your brain!

In the video series "Pimp your brain!" scientists explain techniques they use in the labs and what simple but genius ideas are hiding behind complicated science terms.

Cabbage, Brussels sprouts, cauliflower, curly kale or turnip greens, these popular vegetables look really different, but are actually very closely related. In this "pimp your brain" episode, Kathleen Dahncke from the Max Planck Institute of Molecular Plant Physiology in Golm, Germany, explains how this diversity evolved and which part of the plant we eat.

In this "pimp your brain" episode Fritz Kragler from the Max Planck Institute of Molecular Plant Physiology in Potsdam-Golm, Germany, talks about fluorescence microscopy, how it works and how it is used in research. In addition, he explains a confocal laser scanning microscope and shows some impressive images of his research.

Jan Lisec from the Max Planck Institute of Molecular Plant Physiology explains, in this "pimp your brain" episode, what bioinformatics is and why bioinformatics is so important and indispensable for biological research.

Fritz Kragler from the Max Planck Institute of Molecular Plant Physiology in Golm, Germany, explains in this "pimp your brain" episode what RNA interference is, how plants can protect themselves against viruses by this mechanism and why RNA interference is used as a tool in research.

Jan Lisec from the MPI of Molecular Plant Physiology describes in this pimp your brain sequence what heterosis is, why heterosis occurs and explains new approaches to identify the lines or varieties that are best suited to be crossed with each other in order to produce the highest heterosis in their progeny.

In this pimp your brain episode Mark Stitt from the Max Planck Institute of Molecular Plant Physiology explains why plants have a problem at night and how they solve it.

Plants produce a whole variety of different substances, so-called metabolites. Lothar Willmitzer from the Max Planck Institute of Molecular Plant Physiology in Potsdam, Germany, explains why he wants to know them all.

Researchers separate the molecular content of plants into columns that are only 0.25 millimetres thick, but 40 metres long: Alexander Erban from the Max Planck Institute of Molecular Plant Physiology in Potsdam, Germany, explains how this process works.

Gel electrophoresis is a commonly used method in molecular biology, biochemistry and food analysis to separate molecules from one another. Mercedes, PhD student at the Max Planck Institute of Molecular Plant Physiology in Potsdam-Golm, Germany, explains in this "pimp your brain" episode, how gel electrophoresis works and why and how she uses this method in her research. How Mercedes proceeds in her research, she has previously explained in the film "From greenhouse to the lab" https://www.youtube.com/watch?v=CppEr....

We all know that wheat is used to bake bread, and durum wheat is used to make pasta. But who knows that wheat originated long, long ago from wild grass species in the Middle East? In this "pimp your brain" episode, Kathleen Dahncke explains why there are six sets of chromosomes in wheat and what they tell us about the evolution and domestication of this important crop plant.

The Augustinian monk Gregor Mendel who lived in Brunn in Austria is considered the "father of genetics". In the mid-19th century he established the Mendelian laws which deal with the principles of inheritance. What is meant by the "law of uniformity" and the "law of segregation"? This is explained by Kathleen Dahncke from the Max Planck Institute of Molecular Plant Physiology in Golm, Potsdam, using Begonia (Begonia semperflorens) and the four o'clock plant (Mirabilis jalapa) as examples.

In this "pimp your brain" epidsode Kathleen Dahncke explains what is meant by the law of segregation or the Second Mendelian law which was first established as well as the First Mendelian law by the Augustinian monk Gregor Mendel in the mid-19th century.

Everyone knows, what a highlight or a mark in a text is. But what is meant by a marker, when it comes to plant breeding, and what does breeders mean by marker assisted selection (MAS)? Karin Koehl from the Max Planck Institute of Molecular Plant Physiology gives out the answers in this "pimp your brain" sequence.

Humans and animals depend on plants. Mark Stitt from the Max Planck Institute of Molecular Plant Physiology explains why and how.

The inherited characteristics of an organism are determined by its genome, and depend on the sequence of the four bases A, C, G, and T. Genome sequencing is generating a flood of raw data about these sequences. The bioinformatician Dirk Walther explains, in an interview with Ragnar Vogt, how this data can be processed and interpreted.

Using mass spectrometry, researchers are able to measure the mass of different molecules and determine the various substances of a sample. Jessica Jüppner from the Max Planck Institute of Molecular Plant Physiology in Potsdam, Germany, talks about how she does this.

 
loading content