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Chapter 1

Biological Background

1.1 Biological example

In the following chapters, especially in Chapter 2 and 3, we will refer to a
biological example to analyse and understand the features and problems of
the discussed approaches and translations (for details see [12, 13]).

An overview of this small biological network is given in this section. An
extended version of the network is explained in detail in Chapter 4.

Figure 1.1: Sulfur starvation response-pathway of Arabidopsis thaliana

Figure 1.1 shows a graphical representation of the causal relationships of
the sulfur starvation response-pathway of Arabidopsis thaliana.
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1.1. BIOLOGICAL EXAMPLE 5

Sulfur is essential for Arabidopsis thaliana. If the amount of sulfur Ara-
bidopsis thaliana can access is not sufficient to allow a normal development
of the plant, the plant follows a complex strategy. First the plant forms ad-
ditional lateral roots to access additional sources of sulfur and to normalise
its sulfur level. However, if this strategy is not successful the plant uses its
remaining resources to form seeds. A simplified version of this network is
shown in Figure 1.1.

Normally, the amount of sulfur in a plant will be sufficient, but due to
external, e.g. environmental conditions, the amount of sulfur can be reduced.
A problem, when modelling this network are these environmental conditions,
which are not and cannot be part of such a model and which might or might
not lead to the reduction of sulfur.

Once the level of sulfur in the plant is decreased complex interactions of
different compounds are triggered. Genes are activated, which induce the
generation of auxin, a plant hormone, which plays a key role as a signal in
coordinating the development of the plant. This eventually leads to the for-
mation of additional lateral roots. Since this consumes the scarce resources,
this development should be stopped, when it becomes apparent, that it will
not be successful, i.e. it takes to long and consumes too many of the plant’s
resources.

This “emergency stop” is triggered by complex interactions that lead, via
a surplus of the auxin flux, to the expression of IAA28. The gene IAA28
is a member of the auxin/IAA family. It appears to prevent or delay the
formation of lateral roots [9].

If IAA28 is expressed and the sulfur level is still low, other processes will
result in a different physiological endpoint, the production of seeds.

The interactions mentioned here, are very complex and only a small part
is included in this model, to keep it concise, which eases the understanding
of the following examples.



Chapter 2

Action Languages

In the previous chapters we explained the biological problems we are fo-
cussing on and discussed Petri Nets, an approach which is currently used to
model biological networks. In this chapter, we propose action languages as
an alternative approach. The application of action languages for modelling
biological networks was first introduced by Baral and Tran in [11, 2].

We will give an introduction to action languages and present the action
language CTAID, which is especially designed for the representation of knowl-
edge about biological networks.

The action language CTAID consists of three sublanguages. The first sub-
language is the action description language, which is used to describe the
general knowledge about a dynamic system. A second sublanguage, called
action observation language, allows to specify knowledge about particular
situations. The third sublanguage is referred to as action query language.
It allows to express queries for planning, explanation and prediction. These
queries are used to reason about the dynamic system.

After giving a short historical introduction in Section 2.1, we introduce
the different action languages and expressions supported in this thesis. They
are explained in the sections 2.2.1, 2.2.2 and 2.2.3. In Section 2.2.5, 2.2.6
and 2.2.7 the different kinds of possible queries are explained in detail, also
including small examples.

Formal definitions for interpretations and models are given in Section
2.2.2. An interesting and important question is whether it is possible to
decide what a good model is and possibly even what the best model is.

Section 2.2.4 deals with the notion of time and how it is used in the
current context.

6



2.1. HISTORY 7

2.1 History

2.1.1 Fluents and Actions

Action languages are based on the concepts of fluents and actions, a thorough
introduction can be found in [10]. Fluents have a value, which can change in
time. They can be seen as objects, attributes, conditions or the like, which
can have specific values. Every day examples could be: the fluent colour
has the value blue, the fluent window has the value open. In the action
signature employed in this approach, there are only two possible values: true
and false, which represent the corresponding boolean truth values.

The value depends on time. That means at different points of time a
fluent can have different values. How the value of a fluent can change and
how it can be changed, depends on the fluent. Usually, a fluent changes its
value as a direct effect of executing an action.

Actions can influence the values of the fluents. Coming back to the every
day example, the action “close window” could change the value of the fluent
window from open to closed or using fluents with boolean truth values, the
fluent “window closed” would change its value from false to true and the
fluent “window open” would change its value from true to false.

It is possible to change the value of a fluent by executing an action.
But the question is, obviously, which action influences which fluent in which
way. These questions are discussed in the following sections. One important
aspect is the problem of deciding the current value of a fluent, especially if no
actions executed before had any influence on the value of a particular fluent.
Often it is assumed that the value of a fluent does not normally change, this
is referred to as the frame problem.

We can distinguish two kinds of fluents, inertial fluents and non-inertial
fluents. Inertial fluents keep the value they had, unless they are affected by
an action or by other fluents. Non-inertial fluents can change their value
without such a reason.

Since the concept of both kinds of fluents, inertial and non-inertial, are
useful for biological systems, both kinds can be expressed in the action de-
scription language proposed in Section 2.2.1. In general non-inertial fluents
do not need to have a default value. Nevertheless, in the action descrip-
tion language proposed here, there is the restriction, that non-inertial fluents
alway require a default value, so that their values change in a predefined way.

A default value is used to express that a fluent has normally a certain
value, unless it is known to have a different one.

Especially in biological systems, which are by itself very complex and usu-
ally not every aspect is modelled, default values are very useful, for example
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when it comes to modelling metabolites that are present in high concentra-
tions or environmental condition which usually do not change.

2.1.2 Action signatures and transition systems

An action signature defines the alphabet, that can be used to describe the
knowledge for example about a biological network, i.e. names of fluents and
actions. Additionally, it defines the possible values, which can be assigned
to the fluents. Obviously the action signature differs for every network.
The definitions given in [5] are adapted to the needs of the action language
proposed here.

Definition 2.1 (Action signature). Let A, F and W be non-empty sets of
action names, fluent names and value names. An action signature is the
triple 〈A, F,W 〉.

Informally, fluents, which are represented by symbols from F , can be as-
signed values, which are symbols from W . In the following only propositional
action signatures are considered, i.e. W = {true, false}. The execution of
actions, represented by symbols from A, can change the state of the world.

In the following, when talking about fluent names and action names,
they will for simplicity be referred to as fluents and actions. A fluent literal
is either a fluent f or its negation ¬f .

When we talk about a state, we refer to a complete and consistent set of
fluents, i.e. a value is assigned to every fluent defined by the action signature.

Definition 2.2 (Transition system). Let 〈A, F,W 〉 be an action signature,
S be a set of states, and V : F × S → W and Φ : A × S → S be functions.
Then (S, V, Φ) is a transition system for an action signature 〈A, F,W 〉.

In general a transition system can be seen as a graph, where the states of the
transition system are the nodes and the arcs are defined by the transition
relation.

There are many different action description languages described in the
literature (see [1, 5, 6]).

2.1.3 Action Description Language A
The first high-level action language introduced in the literature, is the action
language A of Gelfond and Lifschitz, (see [4]). It is a very simple language
which only supports one sort of expressions, but it is a good start to under-
stand the intuition behind action description languages.

An action description is a set of expressions of the form
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(A causes L if F)

Here, A is an elementary action, L and F are sets of fluent literals. The set
L is also called the head of the expression. If F is the empty set, the if-part
is simply omitted and written as:

(A causes L)

Such a causal law describes the effects of an action A on a set of fluents
F if the preconditions in L hold. But an important and not easily answered
question is: “What happens to those fluents not affected by the causal law?”
The solution provided by the action description language A is very simple,
every fluent not affected by the causal law remains unchanged.

In the language A fluents can only have two possible values, true and
false, that means W = {true, false} So when specifying the transition
system for the action description language A, the transition system (S, V, Φ)
is defined as follows:

• The set of states S are all possible interpretations of F , i.e. all possible
combinations of truth assignments. The number of states is 2|F |.

• V (f, s) gives the value of fluent f in state s.

• The resulting state s′ is defined by the transition relation Φ. If s′ exists,
Φ(A, s) has to satisfy the following condition (see [5]):

E(A, s) ⊆ s′ ⊆ E(A, s) ∪ s

where E(A, s) = {L | (A causes L if F), F ∈ s}

Intuitively, Φ defines s′ as the state, which contains all effects of an action A
when executed in a state s. All fluents which are not affected by the action
A will have the same value in s′ as in s. This implies, that all fluents are
considered to be inertial.

For every action A and every state s there is at most one state s′ which
satisfies the transition relation. That means the action language A is deter-
ministic (see [5] for details).

2.1.4 Action Description Language C
The action language C is an extension of action language A. It provides
additional language expression; besides direct effects of actions it is possible
to describe dependencies between fluents. The possible evolution of the world
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also changes, because fluents are no longer implicitly inertial, that means they
might change their value even if they are not affected by an action.

The major difference, however, is the notion of causality used in C. It
clearly distinguishes between assuming that a fact holds and knowing that a
fact was caused, (see [5, 6]). Moreover the concurrent execution of actions is
possible.

In the following a formula U = f1∧. . .∧fn∧a1∧. . .∧am is a propositional
combination of actions and fluents. The sets F and G are sets of fluents.

Language C provides two different kinds of expressions. A static causal
law

(caused F if G)

expresses that there is a reason or a cause for F to be true if G holds in that
state.

A dynamic causal law

(caused F if G after U)

describes the effects of the actions contained in U . Informally, it means that
F is caused to hold in s′ if all fluents in U hold in s, all actions in U occur,
and if the successor state s′ satisfies G. In both kinds of laws the if part can
be omitted, if G is true.

Such dynamic causal laws are, for example, used to express inertial be-
haviour of fluents, to define default values for other fluents or to restrict the
executability of actions (for details see [5]).

The transition system of action language C is more restricted than the
one of action language A.

• The set of states S is the set of interpretations of the set of all fluents
F which satisfy all static causal laws. That means, whenever the pre-
conditions G of a static causal law hold in a state s also the head F of
the static causal law holds in s.

• V (f, s) gives the value of fluent f in state s

• All transitions Φ(A, s) = s′ have to be causally explained. That is, if s′

exists, it is the interpretation of F that satisfies all static and dynamic
laws and thus satisfies all fluents which are caused in that transition
(see [7] for details).

In the context of action language C the notion of exogenous actions1 was
introduced. Such actions are assumed to have a cause, but this cause is
external and thus not modelled by the given propositions.

1CCalc Tutorial: http://www.cs.utexas.edu/users/tag/cc/tutorial/toc.html
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2.2 Action Language CTAID

2.2.1 Action Description Language

The action description language presented here provides a framework to de-
scribe biological networks, their components and the relationships and in-
teractions between these components. Although there are expressions which
are especially useful to express knowledge about a biological network the
language itself is not limited to this application.

It adopts the notion of causality of the action language C. That means
every fluent needs to have a reason for its current value and every action
has to have a cause for its occurrence. The action language CTAID allows to
express triggering (T ), allowance (A) and inhibition (I) relationships and it
is possible to define default values (D).

Syntax

In the following, the different expressions provided by the action description
language are introduced, their syntax and also their intended meaning.

In the following f, f1, . . . , fn, g1, . . . , gn are used as symbols for fluent lit-
erals, a is used as an action symbol. A fluent literal is either a fluent (e.g.
f) or a negated fluent (e.g. ¬f)

As mentioned before, fluents represent the current state of the world and
actions can influence this state by changing the values of the fluents. There
can be numerous and complex indirect effects which might or might not be
modelled or even known. But in general, when it comes to the question how
fluents can be influenced, we first think about direct effects of actions. For
example during a chemical reaction the reactants will be decreased and the
products will be increased as direct effects of this reaction

Example 2.1. Let us consider the small example given in Figure 2.1. The
action signature 〈A, F,W 〉 of this example is the following:
W = {true, false}
F = {normal sulfur , depleted sulfur , active auxin inducible genes ,

enhanced lateral roots , changed ca2 , expressed iaa28 , seeds}
A = {sulfur depletion, activation of auxin inducible genes ,

enhanced lateral root formation, sulfur repletion, surplus auxin flux ,
iaa28 expression, rapid seed production} •
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Figure 2.1: Sulfur starvation response-pathway of Arabidopsis thaliana

Dynamic causal laws can be used to express this kind of direct causal
relationships. The basic form of a dynamic causal law looks like:

(a causes f1, . . . , fn) (2.1)

The action could for example be a chemical reaction or a process in a bi-
ological system. Even though, there may exist this direct relationship, the
outcome often depends on various additional conditions that could include
environmental conditions or the absence or presence of other fluents, for ex-
ample the energy level has to be high enough or oxygen has to be available
or there is no sulfur present in the system.

Although a dynamic causal law cannot be used to express whether or not
an action can occur, it can, however, be used to restrict the effects of an
action to certain situations. That means, an action may only have an effect
if certain preconditions hold. These preconditions are specified in the if-part
of the dynamic causal law, which results in an extended dynamic causal law
of the form:

(a causes f1, . . . , fn if g1, . . . , gm) (2.2)

It is also possible to specify more than one dynamic causal law for an
action. This is very helpful for situations when an action may have differ-
ent effects depending on the current state of the system. That supersedes
additional auxiliary actions.
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Example 2.2. For our running example of the sulfur starvation network, we
can specify several dynamic causal laws.

( sulfur depletion causes depleted sulfur if normal sulfur)
( activation of auxin inducible genes causes

active auxin inducible genes )
( enhanced lateral root formation causes enhanced lateral roots )
( sulfur repletion causes normal sulfur)
( surplus auxin flux causes changed ca2 level)
( iaa28 expression causes expressed iaa28)
( rapid seed production causes seeds)

•

Static causal laws are used to describe dependencies between fluents,
which are expressions of the form:

(f1, . . . , fn if g1, . . . , gm) (2.3)

Although we are primarily interested in causal knowledge, there are still
different ways to understand such a static causal law (see [8]). Possible
meanings are:

1. the fact that g1, . . . , gm holds causes the fact that f1, . . . , fn holds

2. if g1, . . . , gm holds, then the fact that f1, . . . , fn holds is necessarily
caused

The first point claims a causal relationship, i.e. g1, . . . , gm are the reason why
also f1, . . . , fn hold in this state. That might be the intended meaning but
usually the second sentence is more appropriate. It asserts f1, . . . , fn will
always hold if g1, . . . , gm hold and that there is indeed a reason for that, but
the reason is not specified.

Although the second sentence is weaker than the first one, it often mod-
els the rather limited knowledge about a system more adequately, because
complex relationships are often not known or are difficult to include in the
model. Or simply because it is an external reason which is not part of the
model.

The set f1, . . . , fn, specified in the static causal law, can also be seen as
indirect effects of a set of actions which have the direct effects g1, . . . , gm.
Such indirect effects could also be specified as direct effects, but that, be-
sides being not very appropriate, might require a large number of additional
dynamic causal laws to model the desired effects.
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Example 2.3. In the sulfur starvation network, there is an implicit depen-
dency between the fluents normal sulfur and depleted sulfur . Only one of
the two fluents can be true at a time, though it is possible that both are
false, in case the level of sulfur is increased. This background knowledge
can be modelled, using the following static causal laws.

(¬normal sulfur if depleted sulfur )
(¬depleted sulfur if normal sulfur)

•

Occurrences of actions. Very important to realise is the fact that dy-
namic causal laws only specify the causal effects of an action they cannot be
used to express if or when an action will occur. To express that an action
may only occur under certain conditions, the three expressions, explained
below, can be used.

The fact that an action is always immediately executed if certain condi-
tions hold can be expressed by using a triggering rule.

(f1, ..., fn triggers a) (2.4)

This rule says that in a state where f1, ..., fn hold and action a is not inhibited
by any other rule, action a has to occur.

Example 2.4. In our sulfur starvation network, we have several triggered
actions. The last rule includes several preconditions:

( depleted sulfur triggers activation of auxin inducible genes )
( active auxin inducible genes triggers

enhanced lateral root formation )
( changed ca2 level triggers iaa28 expression)
(expressed iaa28 , depleted sulfur triggers

rapid seed production )

•

The notion of triggered actions was already introduced in [11] and in [2].
Declaring an action to be a triggered action is most useful if the dependencies
and the circumstances under which this action occurs are well understood.
But often the information is incomplete, either because we do not know,
i.e. the knowledge about the system is incomplete, or because we do not care,
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i.e. not all information is included in the model. For example, due to the
complex relationships of biological systems it might be the case, that certain
conditions for an action to occur are known but others are not. Additionally,
due to the necessary discretisation, fluents have to be mapped to boolean
truth values and all actions are considered to require the same amount of
time. That means, for example, that all reaction rates are considered to be
equal, but this is obviously not true. Even though it is not possible to include
quantitative knowledge, it should still be possible to restrict the situations
when an action can occur but at the same time allow delays or a choice for
the occurrence of this action.

For this purpose, allowance rules can be used.

(f1, ..., fn allows a) (2.5)

This rule expresses the fact that action a can - but not necessarily has to -
occur in every state where f1, ..., fn hold. On the other hand, if the allowance
rule is not satisfied the action cannot occur. This allows to elegantly exclude
unwanted occurrences of actions.

Example 2.5. In our sulfur starvation network, it is useful to introduce
three allowed actions by the following rules:

(normal sulfur allows sulfur depletion )
( depleted sulfur allows surplus auxin flux )
( enhanced lateral roots allows sulfur repletion )

The first rule is necessary, since normal sulfur is a precondition for the
action to occur, but it is not the actual reason. The reasons are complex
and not included in the network, for example, the soil might not contain a
sufficient amount of sulfur.

The second rule is included, to allow an alternative pathway, which leads
to a different physiological endpoint, namely the production of seeds. But
this should only happen, if the enhanced lateral roots failed to increase the
amount of sulfur. The allowance rule is used to model the choice when the
action happens.

The third rule is used to model the incomplete knowledge about the
reasons, for the success or failure to increase the level of sulfur, by forming
additional lateral roots.

•
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The expressions so far can be used to state when an action can or has
to occur. But there might be situations where an action is not allowed to
occur, therefore inhibition rules can be used.

(f1, ..., fn inhibits a) (2.6)

Such an inhibition rule specifies that the action a will not occur in any state
where f1, ..., fn hold.

Example 2.6. In our running example, there is only the following inhibition
relation:

(expressed iaa28 inhibits activation of auxin inducible genes )

•
Actions for which no triggering or allowance rule is defined, are considered

to be exogenous actions. They can happen at any point of time without
any further reasons why they happen, as long as they are not inhibited.
Nevertheless, these action do have a reason, but this reason is external and
not part of the model.

The action a, for which such a triggering, inhibition or allowance rule is
defined, is also called the head of the rule. If we want to refer to the set of
all triggering (inhibition or allowance) rules with action a as its head, we call
it the triggering (inhibition or allowance) rules of action a.

Concurrency. Especially biological networks are characterised by a high
degree of concurrency, on the other hand, it is possible that certain actions
cannot happen concurrently in a particular situation. That might be due to
the fact that these reactions or processes share the same resources or maybe
because they require opposing environmental conditions, which are usually
not included in the model, for example heat and cold. The no-concurrency
rules can be used to express this knowledge.

(noconcurrency a1, ..., an) (2.7)

The rule lists all actions a1, . . . , an that cannot happen concurrently, that
means, only one action ai ∈ {a1, ..., an} can occur at one point of time.

Example 2.7. Since resources are scarce, they should be used either for
forming roots or to produce seeds, but not both at the same time. This can
be expressed by the following constraint:

(noconcurrency enhanced lateral roots formation, rapid seed production)

•
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Default values. Usually the values of fluents are supposed to change only
when they are the effects dynamic or of static causal laws. But especially in
biological systems the notion of default values is quite useful. It can be used
to say that something has always a specific value, unless explicitly stated
otherwise.

(default f) (2.8)

In this context f is a fluent literal, i.e. a fluent possibly preceded by negation.
If the fluent is negated, its default value is false otherwise it is true.

Example 2.8. Only if the auxin inducible genes are affected by an action
they are active, otherwise they are inactive. In our example we also define
a default value for enhanced lateral roots , in order to efficiently model the
inhibition relation and its side effects.

(default ¬active auxin inducible genes)
(default¬enhanced lateral roots)

Once the activation of auxin inducible genes is inhibited, resources are
not used to form any additional lateral roots. •

A common phenomena in biological systems is oscillation. Default values
can be used to efficiently model this behaviour, for example the continuous
increase and decrease of the concentration of some metabolite.

Example 2.9. The following three rules, describe a possible way to model
oscillation. This example is not part of our running example.

(¬high concentration triggers increase concentration)
( increase concentration causes high concentration)
(default ¬high concentration)

The default value of the fluent is false. This value triggers the action
increase concentration , which causes the fluent to have the value true. Once
the value changed to true no action can be executed and in the next state
the value of the fluent high concentration falls back to the default value, and
the cycle starts again.

The oscillation can be stopped by introducing an inhibition rule for the
action. •
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Semantics

After defining the syntax and explaining the intended meaning of expressions
provided by the action description language we will now formally define its
semantics.

Therefore, we first define a domain description, which represents the mod-
elled biological system in the syntax of the action description language, con-
sisting of expressions of the form (2.1) to (2.8).

Definition 2.3 (Domain description). Let 〈A, F, {true, false}〉 be an action
signature.

A set of rules in the syntax of the action description language CTAID,
which uses only symbols from the sets A and F , is called a domain description
D(A, F ).

When discussing the semantics of this action language some informal
assumptions should be kept in mind (see also [3]):

• the only actions that can occur are those given by the language of the
domain description,

• actions have only those effects which are defined by the dynamic causal
laws of the domain description, and

• all actions are assumed to have the same duration.

The domain description defines a transition system (S, V, Φ), as defined in
Definition 2.2. An interpretation of F defines a value for every fluent f ∈ F .

Definition 2.4 (State). Let (S, V, Φ) be the transition system described by
the domain description D(A, F ).

A state s ∈ S is an interpretation of F such that for every static causal
law

(f1, . . ., fn if g1, . . ., gn)

defined in D(A, F ), we have {f1, . . . , fn} ⊆ s whenever {g1, . . . , gn} ⊆ s.

The definition implies that a state s of the domain description is uniquely
determined by a complete and consistent set of fluents.

The states of such a transition system are all possible interpretations
of this domain description, which satisfy all static causal laws. The upper
bound of the number of states is 2|F | since the values of the fluents can only
be true or false.

To properly understand what can be expressed and how it can be ex-
pressed in this action language, it is necessary to correctly understand under
which conditions an action can or has to occur and when it cannot occur.
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Definition 2.5. Let D(A, F ) be a domain description and s a state of
D(A, F ).

1. An inhibition rule (f1, . . . , fn inhibits a) is active, if for all fluent
literals s |= f1 ∧ . . . ∧ fn, otherwise the inhibition rule is passive.

The set AI(s), is the set of those actions for which there exists at least
one active inhibition rule in s.

2. A triggering rule (f1, . . . , fn triggers a) is active, if for all fluent lit-
erals s |= f1 ∧ . . . ∧ fn, and all inhibition rules of action a are passive,
otherwise the triggering rule is passive.

The set AT (s), is the set of those actions for which there exists at least
one active triggering rule in s.

The set AT (s), is the set of those actions for which there exists at least
one triggering rule and all triggering rules are passive in s.

3. An allowance rule (f1, . . . , fn allows a) is active, if for all fluent lit-
erals s |= f1 ∧ . . . ∧ fn, and all inhibition rules of action a are passive,
otherwise the allowance rule is passive.

The set AA(s), is the set of those actions for which there exists at least
one active allowance rule in s.

The set AA(s), is the set of those actions for which there exists at least
one allowance rule and all allowance rules are passive in s.

4. A dynamic causal law (a causes f1, . . . , fn if g1, . . . , gn) is applicable
in a state s, if for all fluent literals s |= g1 ∧ . . . ∧ gn.

5. A static causal law (f1, . . . , fn if g1, . . . , gn) is applicable in a state
s, if for all fluent literals s |= g1 ∧ . . . ∧ gn.

Observe, that point two and three of the definition express that an action
has to occur or may occur as long as there is one active triggering or allowance
rule respectively. An action cannot occur, only if all triggering or allowance
rules defined for that action are passive.

The effects of an action are determined by the applicable dynamic causal
laws defined for this action.

As defined in [11], if D is a domain description, the direct effects of an
action a are:

E(a, s) = {f1, . . . , fn | (a causes f1, . . . , fn if g1, . . . , gm) is applicable in s}
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The effects of a set of actions A is defined as the union of the effects of
the single actions.

E(A, s) =
⋃
a∈A

E(a, s)

Obviously, the set of effects can be inconsistent, i.e. contain f and ¬f
for some fluent f . Depending on the dynamic causal laws even the effects of
a single actions can be inconsistent. That causes problems because the next
state cannot be determined.

Besides the direct effects of actions, a domain description also defines the
consequences of static relationships between fluents. For a set L of static
causal laws given by the domain description D and a state s, the set

L(s) = {f1, . . . , fn | (f1, . . . , fn if g1, . . . , gm) is applicable in s}

contains the heads of all static causal laws whose preconditions hold in s.
Recall, that fluents for which a default value is defined, change their value

to be the default value, even if they are not affected by a static or dynamic
causal law.

Now, we want to know how the world evolves when an action occurs.
Therefore, following and extending the definition given in [8], the transition
relation is defined, which helps to determine to which state the execution of
no, one or several actions leads.

Definition 2.6. Let D(A, F ) be a domain description and S be the set of
states of D(A, F ). Then, the transition relation Φ ⊆ S × 2A × S determines
the resulting state s′ ∈ S after executing all actions B ⊆ A in state s ∈ S as
follows:

(s, B, s′) ∈ Φ for s′ = {(s ∩ s′) ∪ E(B, s) ∪ L(s′) ∪∆(s′)}
where

∆(s′) = { f | (default f) ∈ D(A, F ),¬f /∈ E(B, s) ∪ L(s′)}
∪ {¬f | (default ¬f) ∈ D(A, F ), f /∈ E(B, s) ∪ L(s′)}

If there are no actions performed, there can nevertheless be a change of
state due to the default values defined by the domain description.

Intuitively, if actions occur the next state is determined by taking all
effects of the applicable dynamic and static causal laws and adding the default
values of fluents not affected by these actions. The values of all fluents that
are not affected by these actions or by default values remain unchanged.
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Example 2.10. Consider the following domain description:

(a causes f) (b causes ¬g) (h if f)
(¬f allows a) (f inhibits a) (g triggers b)
(default g)

The transition diagram, which is defined by the transition relation Φ,
is shown in Figure 2.2. The oscillation, described by g and ¬g, is clearly
represented in the diagram.

Note that the interpretations {f,¬g,¬h} and {f, g,¬h} do not satisfy
the static causal law and are thus no states of this domain description.

The ∆ occurring in the transition diagram, is used to represent, that no
action occurs and that the change of state is due to the application of default
rules.

•

Figure 2.2: State transition diagram of Example 2.10.

The transition relation determines the resulting state when an action is
executed, but it cannot be used to decide whether the action can happen
at all, since it does not consider triggering, allowance or inhibition rules. A
trajectory is a sequence of states and actions that takes all rules, laws and
constraints given by the domain description correctly into account.

Recall Definition 2.5 for the definition of the sets AT (si), AT (si), AA(si)
and AI(si) and the definition of active and passive triggering, allowance and
inhibition rules.
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Definition 2.7 (Trajectory). Let D(A, F ) be a domain description. A tra-
jectory τ = s0, A1, s1, . . . , An, sn of the domain description D(A, F ) is a se-
quence of actions and states where Ai ⊆ A (1 ≤ i ≤ n) and the following
conditions are satisfied for 0 ≤ i < n:

1. (si, A, si+1) ∈ Φ

2. AT (si) ⊆ Ai+1

3. AT (si) ∩ Ai+1 = ∅

4. AA(si) ∩ Ai+1 = ∅

5. AI(si) ∩ Ai+1 = ∅

6. all actions in Ai can occur concurrently, i.e. for all

(noconcurrency A)

it holds that |A ∩ Ai| ≤ 1

A trajectory assures that there is a reason why an action occurs or why it
does not occur. The second and third point of the definition make sure that
the actions of all active triggering rules are included in the set of actions and
that no action for which all triggering rules are passive is included in the set
of actions. Point three and four assure that no actions for which all allowance
rules are passive and no inhibited actions are included in the set of actions.
The definition does not include assertions about the active allowance rules,
because they can be all, but not necessarily have to be all, included in the
set of actions.

The last point of the definition assures, that all non-concurrency con-
straints are correctly applied.

Example 2.11. For the domain description given in Example 2.10 we have
an infinite number of possible trajectories, which is due to the oscillation.

We have the following states:
s1 = {¬f,¬g, h} s2 = {¬f, g, h} s2 = {f, g,¬h} s4 = {f, g, h}
s5 = {f,¬g, h} s6 = {f,¬g,¬h} s7 = {¬f,¬g,¬h} s8 = {¬f, g,¬h}

Some possible trajectories are:
τ1 = s1, {}, s2, {b}, s1, {a}, s4, {b}, s5, {}, s4, {b}, s5, {}, . . .
τ1 = s8, {a, b}, s5, {}, s4, {b}, s5, {}, s4, {b}, . . .

•
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2.2.2 Action Observation Language

The action description language defined in the previous section is used to
define the general knowledge about a biological system. It describes the
fluents, e.g. metabolites, genes or environmental conditions, and the rela-
tionships between them. But it does not include expressions to describe the
current state of the system, to describe what fluents are present and just
as important which ones are not. Nor is there a way to describe observed
actions or actions that should occur.

Syntax

The action observation language provides a framework to express observa-
tions and assumptions. Observations can be made about fluents and about
occurrences of actions. But unlike the general knowledge defined in the
knowledge base, observations are associated with points of time.

Examples of such observations could be “at the beginning there was
enough sulfur”, “although the serine level was normal at ti it was observed
to be increased at tj” or “in the final state additional lateral roots where
formed”.

The following rule is used to express observations about fluents.

(f at ti) (2.9)

In this rule f is a fluent literal, i.e. a fluent possibly preceded by negation
to be able to express the knowledge that a fluent is not present in the state,
i.e. has the value false, at time ti. The initial point of time is referred to as
t0.

How “time” in this context should be understood is explained in more
detail in Section 2.2.4.

Observations about occurrences of actions are expressed using the follow-
ing rule:

(a occurs at ti) (2.10)

For ti holds the same as explained above. The symbol a stands for an action,
this action might be preceded by a negation symbol. Stating that an action
does not occur is usually not very useful, because it contains only very limited
information, especially if there are a lot of possible actions. But on the other
hand, it might be used selectively, to eliminate unwanted solutions.

Example 2.12. Observations about our sulfur starvation network could in-
clude the following observation about a fluent and the occurrence of an action.



24 CHAPTER 2. ACTION LANGUAGES

(normal sulfur at t0)
( sulfur depletion occurs at t0)

•

Semantics

A set of observations about a state might include information about the
values of all fluents or only about the values of some fluents at a certain
point of time. Obviously, if such a set contains only observations about some
fluents for one point of time, it is possible that the same set describes several
states, which differ only from the fluents not included in the observations.

It is often useful if the initial state is completely described by observations.
This idea was for example specified in [11] or [1].

The initial state is here referred to by the symbol s0.

Definition 2.8. Let D(A, F ) be a domain description. A set O of obser-
vations containing either (f at t0) or (¬f at t0) for every f ∈ F is called
initial state complete.

The initial state described by a set of initial state complete observations
is the state where:

• f ∈ s0 iff (f at t0) ∈ O

• ¬f ∈ s0 iff (¬f at t0) ∈ O

The idea is to use the action description language to describe the general
knowledge about the system or network. This description specifies how the
system can evolve over time. By including observations the possibilities of
this evolution are restricted. So only when all information, the domain de-
scription and the observations, is taken into account, we get an appropriate
picture of the world. The combination of domain description and observa-
tions is called an action theory.

Definition 2.9 (Action theory). Let D be a domain description and O be
a set of observations. The pair (D, O) is called an action theory. If the set
of observations O is initial state complete the action theory is initial state
complete.

We already introduced trajectories. Intuitivelly, they specify possible evo-
lutions of the system with respect to the given domain description. Usually
not all trajectories satisfy the observations given by an action theory. Now
we are looking only for those trajectories which satisfy both, the domain de-
scription and the observations given by an action theory. These trajectories
are called trajectory models of the action theory.
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Definition 2.10 (Trajectory model). Let (D, O) be an action theory and
τ = s0, A1, s1, A2, . . . , An, sn be a trajectory of the domain description D that
satisfies all observations in O in the following way:

• if ( f at t) ∈ O, then f ∈ st

• if (a occurs at t) ∈ O, then a ∈ At+1

Then τ is a trajectory model of the action theory (D, O).

Such a model describes correctly the possible evolution of the world. Be-
cause, since it is a trajectory, it satisfies, among others, all dynamic and
static causal laws and all triggering and allowance rules under consideration
of the given observations. Often, there are several different models for an ac-
tion theory and a set of observations. They describe different paths through
the transition system, contain actions in different orders and give different
possible ways, how the world could evolve. The number of such models can
become exceedingly large, whcih is appropriate due to the complexity in-
herent in biological systems. But many of these models contain redundant
information. Minimal models are a subclass of these models, where the num-
ber of redundant actions is minimised. The occurrence of an action in a
state is considered to be redundant for example if there are no applicable dy-
namic causal laws for this action in this state or if the effects of all applicable
dynamic causal laws for this action already hold in this state.

The problem that arises here, is to find biologically meaningful models. So
we are not only interested in the shortest path through the transition system,
but also in, possibly longer, alternative paths and just as well in models
which include the concurrent execution of actions. To decide which actions
are redundant is thus a rather difficult problem and the question whether a
model is biologically meaningful can only be answered by a biologist, not by
an automated reasoner.

Despite these problems Tran and Baral proposed in [11] an ordering of
trajectories which allows to descide which of the trajectory models are mini-
mal. This ordering allows to compare different trajectory models which have
the same initial state. A trajectory model is minimal if it is minimal in
the number of states and the sets of actions are minimal with respect to set
minimality.

This notion of minimality might exclude biologically meaninful and pos-
sibly very interesting models. Especially in biological systems the shortest
path might not always be the best or the most likely one. That means, we
first have to find an answer to the question what a good model of a biological
network is, before we can define it in terms of minimal trajectory models.
Finding a solution for this problem is not part of this thesis.
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A question we can already answer is the question of logical consequence
of observations. That means, given the explicit knowledge specified by an
action theory what information is implicitly given by it.

Definition 2.11. Let (D, O) be an action theory. If f ∈ si holds for all
trajectory models τ = s0, A1, . . . , si, Ai+1, . . . , An, sn, then (D, O) entails the
fluent observation (f at ti), written (D, O) |= (f at ti).

If a ∈ Ai+1 holds for all trajectory models τ = s0, A1, . . . , si, Ai+1, . . . ,
An, sn, then (D, O) entails the action observation (a occurs at ti), written
(D, O) |= (a occurs at ti).

Given a particular trajectory model it can be completely described using
fluent and action observations. But even if we have several trajectory models,
it is possible that some observations are entailed by all of them. This notion
of entailment is used to verify the different queries introduced in the next
sections.

Example 2.13. Consider the observations:

(normal sulfur at ti )
( sulfur depletion occurs at ti)

Given the dynamic causal law ( sulfur depletion causes ¬normal sulfur), a
logical consequence is the observation (¬normal sulfur at ti+1) •

2.2.3 Action Query Language

Now after specifying the knowledge about the system, we are trying to model,
we want to use this knowledge to reason about the system. Reasoning in-
cludes explaining of observed behaviour, but also predicting the futur devel-
opment of the system or how the system may be influenced in a particular
way. There are numerous questions one might want to find an answer for.

Syntax

Queries are about the evolution of the world, i.e. about trajectories. What
queries are possible and how they can be transcribed is explained in more
detail in sections 2.2.5, 2.2.6, and 2.2.7

In general, a query is of the form:

(f1, . . . , fn after A1 at t1, . . . , Am at tm) (2.11)

where f1, . . . , fn are fluent literals, A1, . . . , Am are sets of actions and t1, . . . , tm
are points of time.
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Semantics

For queries the most prominent question is the notion of logic consequence.
Under which circumstances entails an action theory or a single trajectory
model a query.

Definition 2.12. Let (D, O) be an action theory and Q be the query

Q = (f1, . . . , fn after A1 at t1, . . . , Am at tm)

If every trajectory model τ = s0, A′
1, s1, A′

2, . . . , A′
p, sp of (D, O) satisfies

Ai ⊆ A′
i (0 < i ≤ m) and sp |= f1∧ . . .∧ fn. Then f1∧ . . .∧ fn are cautiously

entailed, written (D, O) |=c Q.
If there is at least one model which satisfies these conditions, then f1 ∧

. . . ∧ fn are bravely entailed, written (D, O) |=b Q.

Observe that the fluents f1, . . . , fn specified by the query do not have to
hold immediately at time tm, they only have to hold in the last state of the
trajectory model. For example, there could be some triggering rules which
have to be applied in state sm and this might consequently lead to the desired
result.

Both kinds of reasoning, brave reasoning and cautious reasoning, can
be useful depending on the situation. When verifying whether a certain
state is reachable given the current knowledge cautious reasoning is the most
appropriate method. But on the other hand, brave reasoning allows to check
whether a particular assignment for the fluents is possible and the trajectory
model would specify how it could be achieved.

2.2.4 Time

The notion of time used in this approach is quite abstract. It is independent
of real time points or time intervals. Time is understood more as a means
to be able to specify sequences of actions, i.e. to be able to express that
an action occurred before or after another action, or to state that actions
happened simultaneously.

This is not a disadvantage since duration times of chemical reactions,
the time necessary to reach an equilibrium or similar aspects modelled in a
biological network, are usually not or only partly known. Considering the
lack of information, simulating “real” time would be a very demanding and
for this approach unnecessary task.

It is more useful to comprehend time here, as an enumeration of inter-
esting events, which give us a snapshot of the system at different points of
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time. An interesting event is the occurrence of one or more actions or the
change of a value of a fluent.

Everyone might have a different intuition what time in this context means.
The main idea is certainly to model the relative relationships between the
actions, not the absolute time points of the events.

2.2.5 Planning

In planning, we try to find possibilities to influence a system in a certain way.
Questions that might be answered using planning could be the following: how
to make components of a biological system behave in a particular way or how
to influence components of a biological system to achieve a particular state.

A plan is a sequence of actions, which have to be executed at certain
points of time to reach a goal state, starting from the initial state.

Neither the initial state nor the goal state have to be completely specified
by fluent observations. A plan is thus a sequence of actions starting from
one possible initial state and ending at one possible goal state. There are
usually several plans, taking into account different paths but also different
initial and goal states.

More formally, we are trying to find a set of action occurrences satisfying
the following problem:

(D, Oinit ∪ {(A1 occurs at t1), . . . , (Am occurs at tm)}) |= f1, . . . , fn

where f1, . . . , fn are fluent literals, A1, . . . , Am are sets of actions and
t1, . . . , tm are points of time.

Definition 2.13 (Plan). Let (D, Oinit) be an a action theory such that Oinit

contains only fluent observations about the initial state,

Q = (f1, . . . , fn)

be a query and τ = s0, A1, s1, A2, . . . , Am, sm be a trajectory model of (D, Oinit).
Then

P = {(A1 occurs at t1), . . ., (Am occurs at tm)}

is a plan for the goal G = f1 ∧ . . . ∧ fn, if sm |= f1 ∧ . . . ∧ fn

A plan is always derived from the corresponding trajectory model. The
trajectory model assures that all triggering, allowance, inhibition and default
rules are applied correctly and that all no-concurrency constraints are taken
into account.
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Example 2.14. Consider our running example of the sulfur starvation path-
way. Assume we have the following initial state complete set of observations:
(¬ normal sulfur at t0) ( depleted sulfur at t0)
(¬active auxin inducible genes at t0) (¬enhanced lateral roots at t0)
(¬normal sulfur at t0) (¬changed ca2 at t0)
(¬expressed iaa28 at t0) (¬seeds at t0)

For goal G = {normal sulfur} and time bound n = 3 we find, for example,
the solution:

P = {( activation of auxin inducible genes occurs at t0),
( enhanced lateral root formation occurs at t1),
( sulfur repletion occurs at t2)}

•

2.2.6 Explanation

Usually, we are more interested in understanding the observed behaviour of
a system than in finding a plan to cause certain behaviour of the system.
These observations usually include values of fluents at the beginning and at
the end of an experiment. Of course, they can also include observations about
occurrences of actions. These observations could include the knowledge that
actions happened concurrently or sequentially.

When explaining such observations, we try to fill the gaps, to find the
missing links. An explanation describes the actions that have to occur, ac-
tions that might occur and values of fluents of the initial state, which were
not specified by fluent observations.

However, when explaining observed behaviour it is not necessary to com-
pletely define the initial state, nor the final state. The less information is
provided the more possible explanation there are, because an explanation is
one path from one possible initial state to one possible final state, via some
possible intermediate partially defined states given by the observations.

More formally, a set of action occurrences is an explanation, if it satisfies:

(D, O ∪ {(A1 occurs at t1), . . . , (Am occurs at tm)}) |= true

In contrast to planning the observations can include observations about flu-
ents and actions at different points of time not only about the initial state.
The actions included in the sets A1, . . . , Am have to happen at time points
t1, . . . , tm.

Definition 2.14 (Explanation). Let (D, O) be an a action theory, and let
τ = s0, A1, s1, A2, . . . , Am, sm be a trajectory model of (D, O).

Then
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E = {(A1 occurs at t1), . . . , (Am occurs at tm)}

is an explanation for the set of observations O

Such sequences are possible evolutions of the world.

Example 2.15. Considering the sulfur starvation network, we are looking
for an explanation of the following two fluent observations:

(normal sulfur at t0)
( depleted sulfur at t1)

Obviously, an action occurred, since the only action that has depleted sulfur
as an effect is sulfur depletion there is only one explanation for these fluent
observation.

E = {( sulfur depletion occurs at t0)}

•

2.2.7 Prediction

When predicting a set of fluents, queries are considered to be hypothetical.
Such queries ask generally: if some actions were executed at certain points of
time would that mean that some fluents will have particular values? Predic-
tion is mainly used to determine the influence of an action or a set of actions
on the system.

Formally, a prediction answers the question whether:

(D, O) |= f1, . . . , fn

where f1, . . . , fn are fluent literals, A1, . . . , Am are sets of actions and t1, . . . , tm
are points of time.

Prediction is a kind of hypothetical reasoning, it tries to answer questions
about the possible evolution of the system. A query answers the question
whether, starting at the current state and executing a given sequence of
actions, fluents will hold or not hold after a certain time. As in explanation
the gaps have to be filled, to justify the assumed observations.

After determining all possible trajectory models that fulfil the observa-
tions, it is possible to decide the prediction P = f1, . . . , fn. Three different
outcomes can be distinguished.

1. The prediction could be true in all possible trajectory models,
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2. or it could only be true in some trajectory models,

3. or it could be true in none trajectory model.

The first case means, that no matter which actions are executed, as long as
they do not contradict the observations or assumptions, it has no influence
on the final values of the fluents of interest. This is usually referred to as
cautious reasoning, because it has to hold in all trajectory models.

Another possibility is brave reasoning, where it is enough to find one
trajectory model in which P holds to decide that the prediction is true. This
might save computation time, because as soon as a solution is found the
computation can be stopped. But on the other hand it is a very vague form
of prediction, since it could predict both P and ¬P .

Definition 2.15 (Prediction). Let (D, O) be an action theory and

Q = (f1, . . . , fn)

be a query. If Q holds in the final states of all trajectory models of the action
theory, i.e. {f1, . . . , fn} ∈ sm holds for all trajectory models τ = s0, A1, s1, A2,
. . . , Am, sm, it is called a cautious prediction.

If Q holds in the final states of at least one trajectory model of the action
theory, it is called a brave prediction.

Example 2.16. Consider the following observation about the sulfur starva-
tion network:

(¬depleted sulfur at t1)

The prediction of Q = {enhanced lateral roots} holds in every trajectory
model. On the other hand the prediction Q = {seeds} does not hold in
any trajectory model, since there is no observation about the occurrence
of the action surplus auxin flux or any other action or fluent that requires
the occurrence of this action. But that would be necessary to trigger the
production of seeds.

•



Chapter 3

Translations

This chapter presents two translations from action language CTAID into logic
programs under the answer set semantics. Translation π1 is given in Section
3.1 and π2 in Section 3.2.

The idea of translating action languages into logic programs is not new,
there are several papers and books about this topic, see for example [4] or
[1].

However, since CTAID provides a large variety of features, especially de-
signed for modelling biological networks, there is not yet a translation which
can capture the semantics correctly. Two solutions for this problem are given
in this chapter.

In the following sections the symbols f, f1, . . . , fn, g1, . . . , gn are used as
fluents and the symbol a is used to represent an action.

The translations result in normal logic programs with variables, e.g for
fluents, actions or points of time.

3.1 Translation π1

The translation given in this section is based upon the translation given in
[11]. It uses a metalanguage, which was adapted to and extended by the
expressions provided by CTAID.

3.1.1 Action description language

The translation π1(D) of the domain description includes declarations of
fluents and actions, inertial rules, interpretation constraints, to assure for
example that a fluent and its negation can never hold at the same time,

32
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and the translation of all rules, laws and constraints defined in the domain
description D.

Fluents and actions

The expressions defined by a domain description D(A, F ) have to be com-
posed of symbols from A an F . When constructing the logic program we
first have to define the alphabet.

We declare every fluent f ∈ F by using the predicate:

fluent(f).

Analogously, every action a ∈ A is declared using the predicate:

action(a).

But it is not sufficient to simply declare the fluents and actions. It is
furthermore necessary to explicitly introduce a relationship between a fluent
and its negation. This interpretation constraint is realised by an integrity
constraint of the following form:

:- holds(F,T), holds(neg(F),T), fluent(F), time(T).

This constraint assures that a fluent and its negation cannot both hold in
the same state. In the following we will use the variable F as a shorthand for
the set of all fluents and the variable T as a shorthand for all points of time.

Afterwards, we have to declare which of the fluents are inertial and which
are not. An inertial fluent has the same value as in the previous state, unless
it is explicitly known that the value changed. This preservation of knowledge
is realised by introducing two rules for every fluent.

holds(F,T+1) :- holds(F,T), not holds(neg(F),T+1),
not default(F), fluent(F), time(T;T+1).

holds(neg(F),T+1) :- holds(neg(F),T), not holds(F,T+1),
not default(F), fluent(F), time(T;T+1).

The predicate default(F), used in the body of the rules, assures that only
inertial fluents are affected by these rules. Obviously non-inertial fluents have
to be treated differently.

Example 3.1. The declaration of one inertial fluent and one action, looks
as follows:
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fluent(normal_sulfur).
holds(normal_sulfur,T+1) :- holds(normal_sulfur,T),

not holds(neg(normal_sulfur),T+1), not
default(normal_sulfur),

fluent(normal_sulfur), time(T;T+1).
holds(neg(normal_sulfur),T+1) :- holds(neg(normal_sulfur),T),

not holds(normal_sulfur,T+1), not default(normal_sulfur),
fluent(normal_sulfur), time(T;T+1).

:- holds(normal_sulfur,0), holds(neg(normal_sulfur),0).
action(sulfur_reduction).

•

Default rule

In CTAID, non-inertial fluents can only be declared via a default value. That
means, a default value has to be provided for every non-inertial fluent. If no
default value is specified, the fluent is considered to be inertial.

The default rule

(default f)

is translated into a fact and a rule

default(f).
holds(f,T) :- not holds(neg(f),T), fluent(f),

time(T).

The fact states that there is a default rule for this fluent, specifying the
default value true. If the default value of a fluent f is false the rule that
specifies the default value looks like:

holds(neg(f),T) :- not holds(f,T), fluent(f),
time(T).

It strongly relies on the “negation as failure” operator not, which allows
for reasoning in the absence of knowledge, i.e. if it is not explicitly known
that f has a particular value, assume it has the default value.

Example 3.2. To illustrate how negation is translated, let us specify default
value (default ¬enhanced lateral roots)
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default(enhanced_lateral_roots).
holds(neg(enhanced_lateral_roots),T) :-

not holds(enhanced_lateral_roots,T),
fluent(enhanced_lateral_roots), time(T).

•

Dynamic causal law

A dynamic causal law describes the effects of an action. If an action occurs,
the effects of this action, i.e. truth values for particular fluents, hold at the
next point of time, if all preconditions hold. For a dynamic causal law of the
general form

(a causes f1, . . . , fn if g1, . . . , gn)

the translation results in one rule for every fluent f1, . . . , fn.

holds(f1,T+1) :- holds(occurs(a),T),
holds(g1,T), . . . , holds(gn,T),
fluent(g1), . . . , fluent(gn),
fluent(f1), action(a), time(T;T+1).
...

holds(fn,T+1) :- holds(occurs(a),T),
holds(g1,T), . . . , holds(gn,T),
fluent(g1), . . . , fluent(gn),
fluent(fn), action(a), time(T;T+1).

Example 3.3. The translation for the dynamic causal law ( sulfur reduction
causes reduced sulfur if normal sulfur) is the following:

holds(reduced_sulfur,T+1) :- holds(occurs(sulfur_reduction),T),
holds(normal_sulfur,T), fluent(normal_sulfur),
fluent(reduced_sulfur), action(sulfur_reduction), time(T;T+1).

•

Static causal laws

The value of fluents can also be influenced by static causal laws. In contrast
to dynamical causal laws, static causal laws affect the values of the fluents
in the current state. If the preconditions of the static causal law
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(f1, . . . , fn if g1, . . . , gm)

hold in the current state, also the head of the static causal laws has to hold.
The translation looks as follows.

holds(f1,T) :- holds(g1,T), . . . , holds(gn,T),
fluent(g1), . . ., fluent(gn), fluent(f1), time(T).
...

holds(fn,T) :- holds(g1,T), . . . , holds(gn,T),
fluent(g1), . . ., fluent(gn), fluent(fn), time(T).

Example 3.4. The static causal law (¬normal sulfur if reduced sulfur ) is
translated into:

holds(neg(normal_sulfur),T) :- holds(reduced_sulfur,T),
fluent(reduced_sulfur), fluent(normal_sulfur), time(T).

•

Triggering rule

A triggered action can only occur if all preconditions of the corresponding
triggering rule hold and if it is not inhibited or otherwise prevented from
occurring. The predicate “ab” stands for “abnormal” and assures this inhi-
bition relation. The translation for a triggering rule of the form:

(f1, . . . , fn triggers a)

is the following one:

holds(occurs(a),T) :- not holds(ab(occurs(a)),T),
holds(f1,T), . . . , holds(fn,T),
fluent(f1), . . . , fluent(fn), action(a), time(T).

Example 3.5. The translation of the triggering rule ( increased oas
triggers increasing of serine ) is as follows:

holds(occurs(increasing_of_serine),T) :- not
holds(ab(occurs(increasing_of_serine)),T),
holds(increased_oas,T), fluent(increased_oas),
action(increasing_of_serine), time(T).

•
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Allowance rule

The predicate “allow” is introduced to be able to distinguish which actions
are allowed in which state. This allowance rule however has no influence on
the fact whether the allowed action occurs or not. The allowance rule

(f1, . . . , fn allows a)

is translated as:

holds(allow(occurs(a)),T) :- not holds(ab(occurs(a)),T),
holds(f1,T), . . . , holds(fn,T),
fluent(f1), . . . , fluent(fn), action(a), time(T).

For all non-triggered actions for which no allowance rule is specified, the
translation includes a rule, stating that this action can always occur.

holds(allow(occurs(a)),T):- action(a), time(T).

Example 3.6. For the allowance rule ( enhanced lateral roots allows
sulfur repletion ), we have the following translation:

holds(allow(occurs(sulfur_repletion)),T) :- not
holds(ab(occurs(sulfur_repletion)),T),
holds(enhanced_lateral_roots,T),

fluent(enhanced_lateral_roots),
action(sulfur_repletion), time(T).

•

Inhibition rule

Since the inhibition rule

(f1, . . . , fn inhibits a)

represents abnormal behaviour, in the sense that even though the precon-
ditions e.g. of a triggering rule are satisfied, an action cannot occur, it is
translated using the “ab” predicate. The resulting rule is:

holds(ab(occurs(a)),T) :- action(a),
holds(f1,T), . . . , holds(fn,T),
fluent(f1), . . . , fluent(fn), time(T).
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Example 3.7. Consider the triggering rule (expressed iaa28 inhibits
activation of auxin inducible genes ) The translation looks like follows:

holds(ab(occurs(activation_of_auxin_inducible_genes)),T) :-
action(activation_of_auxin_inducible_genes),
holds(expressed_iaa28,T), fluent(expressed_iaa28), time(T).

•

No-concurrency Constraint

The no-concurrency constraint

(noconcurrency a1, . . . , an)

enumerates a list of actions out of which at most one action can occur at
each point of time. It is translated using the lparse expression of weight
constraints, resulting in the following translation:

:- 2 {holds(occurs(a1),T):action(a1), . . . ,
holds(occurs(an),T):action(an)}, time(T).

Example 3.8. In the example there are two actions which cannot hap-
pen concurrently (noconcurrency rapid seed production, lateral root for−
mation)

:- 2 {holds(occurs(rapid seed production),T):
action(rapid seed production),
holds(occurs(enhanced lateral root formation),T):
action(enhanced lateral root formation)}, time(T).

•

3.1.2 Action observation language

Fluent observation

There are two different kinds of fluent observations, on the one hand, those
about the initial state and on the other hand the fluent observations about
all other states. The fluent observations (f at t0) about the initial state are
simply translated as facts:

holds(f,0).
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Because they are just assumed to be true and need no further justification.
All other fluent observations (f at ti) however need a justification. Due to
this, fluent observations about all states except the initial state are translated
into integrity constraints of the form:

:- not holds(f,i), fluent(f), time(i).

In this way all solutions which are not of interest, i.e solutions not containing
the observations, are eliminated, but it is also assured that all remaining
solutions are trajectory models corresponding to Definition 2.10.

Example 3.9. The example specifies two fluent observations, one about the
initial state (¬reduced sulfur at t0), the other one about a later moment of
time ( reduced sulfur at t1).

holds(neg(reduced_sulfur),0).
:- not holds(reduced_sulfur,1), fluent(reduced_sulfur), time(1).

•

Action observation

When translating action observations the different kinds of actions have to
be considered. Exogenous actions can always occur and need no further
justification, that is why such an exogenous action observation

(a occurs at ti)

is straight forward translated as a fact:

holds(occurs(a),i).

Unlike this, observations about triggered or allowed actions must have a
reason, e.g. an active triggering or allowance rule, to occur. To assure this
justification, the action observation is translated using constraints of the
form:

:- holds(neg(occurs(a)),i), action(a), time(i).

Example 3.10. There are two action observation in this example, the first
one ( sulfur reduction occurs at t0) is about an exogenous action, the sec-
ond one ( sulfur repletion occurs at t4) is about an allowed action.

holds(occurs(sulfur_reduction),0).
:- holds(occurs(neg(sulfur_repletion)),4),

action(sulfur_repletion), time(4).

•



40 CHAPTER 3. TRANSLATIONS

3.1.3 Action query language

The domain description specified the knowledge about the system and the
observations described the actual evolution of the system. Now, The different
queries allow us to evaluate and reason about the system using the available
information.

When computing the different solutions using answer set solvers, the en-
tire translation of the domain description is taken into account. Which ob-
servations are included in this process of evaluation depends on the kind of
query. Prediction and explanation considers all observations, in planning, on
the other hand, only fluent observations about the initial state are taken into
consideration.

Explanation

In explanation, we are looking for a set of actions that explains a set of
observations, i.e. we are trying to find initial states and sets of actions that
justify the observed behaviour of the system, as defined in Definition 2.14.

The translation of an explanation contains the translation of all action and
fluent observations as defined in Section 3.1.2. Since the observations about
the initial state are often not complete the translation contains furthermore
for every fluent f two rules

holds(f,0):- not holds(neg(f),0).
holds(neg(f),0):- not holds(f,0).

to generate all initial states which do not contradict the observations.

Similarly, we have to generate possible combinations of occurrences of
actions, for all states. The translation includes two rules for every exogenous
and allowed action.

holds(occurs(a),T) :- holds(allow(occurs(a)),T), not
holds(ab(occurs(a)),T), not holds(neg(occurs(a)),T),
action(a), time(T), T<n.

holds(neg(occurs(a)),T) :- not holds(occurs(a),T),
action(a), time(T),T<n.

The constant n has to be provided and represents the upper time bound.



3.1. TRANSLATION π1 41

Plan

A plan is a sequence of actions, which lead from an initial state to a state
where the goal of the plan is satisfied, see Definition 2.13. The initial state
is partially or completely specified by fluent observation about the initial
state. Only the translation of these initial fluent observations, as defined in
Section 3.1.2, is included, when we are computing a plan. As in explanation,
we have to include two rules for every fluent f , which generate all possible
initial states.

holds(f,0):- not holds(neg(f),0).
holds(neg(f),0):- not holds(f,0).

A goal G of a plan is a set of fluents G = f1, . . . , fn, which is translated
using the predicate “achieved”. It ensures that the goal holds in the final
state of every answer set for query.

:- not achieved.
achieved :- achieved(0).
achieved :- achieved(T+1), not achieved(T), time(T;T+1).
achieved(T) :- holds(f1,T), . . . , holds(fn,T), achieved(T+1),

fluent(f1), . . . , fluent(fn), time(T;T+1).
achieved(n) :- holds(f1,T), . . . , holds(fn,T),

fluent(f1), . . . , fluent(fn),T = n.

The constant n is the maximal time bound, i.e. the maximum number
of steps in which the goal should be achieved. Additionally, the translation
contains for every allowed and exogenous action the two rules:

holds(occurs(a),T) :- holds(allow(occurs(a)),T),
not achieved(T), not holds(ab(occurs(a)),T),
not holds(neg(occurs(a)),T), action(a),
time(T).

holds(neg(occurs(a)),T) :- not holds(occurs(a),T),
action(a), time(T).

These rules are used to generate all possible combinations of occurrences
of non-triggered actions. Such actions can only occur as long as the goal is
not yet achieved and if they are not inhibited.
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Prediction

In prediction we are interested in the question, whether a set of fluents is
a consequence of the observed behaviour of the system, see Definition 2.15.
Obviously, the translation includes all fluent and action observations. As
in explanation, we have to fill in missing information, which is necessary to
justify the observed behaviour. That means we have to include for every
fluent f two rules to generate possible initial states.

holds(f,0):- not holds(neg(f),0).
holds(neg(f),0):- not holds(f,0).

Moreover the translation includes for every non-triggered action two rules
similar to those of an explanation. But this time these actions can only occur
up to time i. It represents the latest point of time for which there is an
observation. Afterwards only triggered actions can occur. This restriction
is necessary, since otherwise it is not possible to make any useful prediction,
because the system could evolve randomly in any direction.

holds(occurs(a),T) :- holds(allow(occurs(a)),T),
not holds(ab(occurs(a)),T),
not holds(neg(occurs(a)),T),
action(a), time(T), T<n, T<i.

holds(neg(occurs(a)),T) :- not holds(occurs(a),T),
action(a), time(T), T<n, T<i.

The actual prediction, represented as the set of fluents P = f1, . . . , fn, is
translated as:

predicted :- holds(f1, T), . . ., holds(fn, T),
fluent(f1), . . ., fluent(fn), time(T), T ≥

i.

The value of i is either specified in the query or it is the time of the latest
observation.

3.2 Translation π2

The second translation is more direct than the first one, since it does not
involve a meta language
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3.2.1 Action description language

Fluents and actions

In general fluent and action names are translated by adding the prefix “flu-
ent” or “action” to the name. This is only done for readability reasons and
to ease the evaluation of the answer sets. It is not necessary for the logic
program, since the context is sufficient to decide, whether it is a fluent or an
action. Since there are no meta language predicates, fluents and actions can-
not be directly declared using a simple fact. Fluents are declared indirectly
using the inertia rules or by using the default rules, depending on the kind
of fluent.

Actions are not explicitly declared in the logic programs, they are intro-
duced when dynamic causal laws, triggering, allowance and inhibition rules
are defined.

For an inertial fluent f , i.e. a fluent for which no default value is specified
the translation looks as follows:

fluent_f(T+1) :- fluent_f(T), not neg_fluent_f(T+1),
time(T;T+1).

neg_fluent_f(T+1) :- neg_fluent_f(T), not fluent_f(T+1),
time(T;T+1).

In that way the fluent f and its negation ¬f are introduced as fluent_f

and neg_fluent_f

Example 3.11. The rules to define the fluent normal sulfur look as follows:

fluent_normal_sulfur(T+1) :- fluent_normal_sulfur(T), not
neg_fluent_normal_sulfur(T+1), time(T;T+1).

neg_fluent_normal_sulfur(T+1) :- neg_fluent_normal_sulfur(T), not
fluent_normal_sulfur(T+1), time(T;T+1).

•
Additionally, for every action and every fluent, regardless of whether it

is an inertial or non-inertial fluent, an integrity constraint is used to realise
explicitly the relationship between a fluent and its negation.

:- action_a(T), neg_action_a(T), time(T).
:- fluent_f(T), neg_fluent_f(T), time(T).

Since the negation of actions and fluents is realised by introducing new
names, these names have to be linked and it has to be assured, that a fluent
and its negation, respectively an action or its negation, can never hold in the
same state.
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Default rule

If a default value is defined for a fluent, the fluent has to be declared in a
different way. The translation of a default rule

(default f)

is used to declare the fluent and to define its default value. To declare the
default value true the following rule is used:

fluent_f(T):- not neg_fluent_f(T), time(T).

The default value false is declared analogously:

neg_fluent_f(T):- not fluent_f(T), time(T).

Example 3.12. For the rule (default ¬enhanced lateral roots), the trans-
lation is:

neg_fluent_enhanced_lateral_roots(T):- not
fluent_enhanced_lateral_roots(T), time(T).

•

Dynamic causal law

The translation of a dynamic causal law

(a causes f1, . . . , fn if g1, . . . , gn)

defines one rule for every effect of the action. The body of the rule includes
the action and all preconditions specified by the dynamic causal law.

fluent_f1(T+1) :- action_a(T),
fluent_g1(T), . . . , fluent_gn(T),

time(T;T+1).
...

fluent_fn(T+1) :- action a(T),
fluent_g1(T), . . . , fluent_gn(T),

time(T;T+1).

Example 3.13. The translation of the dynamic causal law without precondi-
tions ( enhanced lateral root formation causes enhanced lateral roots ) is:

fluent enhanced lateral roots(T+1) :-
action enhanced lateral root formation(T), time(T;T+1).

•
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Static causal law

The translation of the static causal law

(f1, . . . ,fn if g1, . . . ,gm)

includes one rule for every fluent f1, . . . , fn. The preconditions are specified
in the bodies of the rules.

fluent_f1(T+1) :- fluent_g1(T), . . . , fluent_gn(T), time(T).
...
fluent_fn(T+1) :- fluent_g1(T), . . . , fluent_gn(T), time(T).

Example 3.14. The static causal law (¬normal sulfur if reduced sulfur ) is:

neg_fluent_normal_sulfur(T) :- fluent_reduced_sulfur(T), time(T).

•

Triggering rule

The triggering rule

(f1 , . . . ,fn triggers a)

is split into two parts when it is translated. The first part involves only the
preconditions of the rule. If the head of this rule is satisfied, the triggering
rule is applicable in the current state. But on the other hand there might be
an inhibition rule which can prevent the occurrence of the triggered action.
This relationship is ensured by the second rule which defines whether the
action occurs or not. If the action occurs, the triggering rule has to be
applicable and all inhibition rules are passive.

trigger_action_a(T) :- fluent_f1(T),. . ., fluent_fn(T),
time(T).
action_a(T) :- trigger_action_a(T), not neg_action_a(T),
time(T).

Here, neg_action_a(T) expresses the fact that action a does not occur
at time t. It does not provide the information whether this is due to some
observations or an inhibition rule or whether it is simply an assumption made
by the logic program.
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Example 3.15. The rule triggering ( increased serine triggers increasing
of tryptophan) is translated into:

trigger_action_increasing_of_tryptophan(T) :-
fluent_increased_serine(T), time(T).

•

Allowance rule

The allowance rule

(f1, . . . , fn allows a)

is translated using the same idea as for triggering rules. But the translation
of the knowledge base includes only the first part, which defines whether all
preconditions of the allowance rule hold or not. This part of the translation
does not take inhibition relationships into account.

allow action a(T) :- fluent f1(T), . . . , fluent fn(T), time(T).

The second part of the allowance rule, which is used to decide whether the
action occurs or not and which is used to generate possible combinations
of occurrences of actions, depends on the type of the query. That means
the rule that is included when we want to compute possible explanations is
different from the rule that is included when we compute a plan. They will
be explained in detail in Section 3.2.3.

For every exogenous action a, a rule, saying that the action is always
allowed, is included:

allow action a(T) :- time(T).

Example 3.16. The allowance rule ( reduced sulfur allows increasing of
oas) is translated as:

allow_action_increasing_of_oas(T) :- fluent_reduced_sulfur(T),
time(T).

•
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Inhibition rule

The translation of an inhibition rule

(f1,. . .,fn inhibits a)

is straightforward. If the preconditions of the rule are satisfied the action
cannot occur, this fact is expressed by negating the action.

neg_action_a(T):- fluent_f1(T),. . ., fluent_fn(T), time(T).

Example 3.17. The translation of the inhibition rule (expressed iaa28
inhibits activation of auxin inducible genes ) is:

neg_action_activation_of_auxin_inducible_genes(T) :-
fluent_expressed_iaa28(T), time(T).

•

No-concurrency Constraint

The no-concurrency constraint

(noconcurrency a1,...,an)

is translated as an integrity constraint using weight constraints:

:- 2 {action_a1(T), . . . , action_a2(T)}, time(T).

Example 3.18. The following two actions cannot happen at the same time
(noconcurrency rapid seed production, lateral root formation) The trans-
lation looks as follows:

:- 2 {action rapid seed production(T),
action lateral root formation(T)}, time(T).

•

3.2.2 Action observation language

Fluent observation

When translating fluent observations, we have to distinguish between flu-
ent observations about the initial state or about all other states. A fluent
observation (f at t0) about the initial state is translated as a fact.
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fluent_f(0).

An observation (f at ti) about fluents in all other states is translated as an
integrity constraint:

:- not fluent_f(i), time(i).

Action observation

Action observations

(a occurs at ti)

can be made about different kinds of actions. Exogenous actions can alway
occur. That is the reason why the translation of such an action is a simple
fact:

action a(i).

Whereas the translation of all other action observations involve integrity
constraints, because they need a justification.

:- neg action a(i), time(i).

3.2.3 Action query language

Explanation

The translation of an explanation includes the translation of all actions and
fluent observations as specified in Section 3.2.2. Furthermore, it includes for
every fluent f two rules

fluent f(0):- not neg fluent f(0).
neg fluent f(0):- not fluent f(0).

which are used to generate all possible initial states. Additionally, an expla-
nation includes for every exogenous and every allowed action two rules

action a(T) :- allow action a(T), not neg action a(T),
time(T), T<n.

neg action a(T) :- not action a(T), time(T), T<n.

These rules are used to generate all possible explanations, taking into
account that an allowed action can only occur if a corresponding allowance
rule is applicable and all inhibition rules are passive.

The upper time bound n has to be provided. It is the maximum length
of an explanation.
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Plan

A planning problem for the goal G = f1, . . . , fn, as defined in Definition 2.13,
is translated by including all fluent observations about the initial state. Since
the set of initial fluent observations might not include an observation about
every fluent, we include for every fluent the two rules

fluent f(0):- not neg fluent f(0).
neg fluent f(0):- not fluent f(0).

These rules can generate possible initial states, which do not contradict
the observations.

Additionally, when evaluating a plan, we have to include for every allowed
and exogenous action the following two rules:

action a(T) :- allow action a(T), not neg action a(T),
not achieved(T), time(T).

neg action a(T) :- not action a(T), time(T).

These rules are used to generate all possible combinations of actions. The
literal not achieved(T) assures, that allowed and exogenous actions can only
occur up to the point of time when the goal of the plan is achieved.

The translation of the goal looks like follows:

:- not achieved.
achieved :- achieved(0).
achieved :- achieved(T+1), not achieved(T),

time(T;T+1).
achieved(n) :- fluent f1(T), . . ., fluent fn(T), T = n.
achieved(T) :- achieved(T+1), fluent f1(T), . . .,

fluent fn(T), time(T;T+1).

The constant n is the maximal time bound. A plan has the maximum
length of n, that means there can be no more then n+1 (including the initial
state) states included in the plan, but a plan can be shorter.

The last rule assures that the atom achieved(T) holds at the earliest
possible point of time, to prevent unnecessary actions.

Prediction

A prediction of a set of fluents P = f1, . . . , fn, as defined in Definition 2.15,
includes the translation of all fluent and action observations, as specified in
Section 3.2.2.

Similar to an explanation, we have to include for every fluent two rules
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fluent f(0):- not neg fluent f(0).
neg fluent f(0):- not fluent f(0).

which generate all possible initial states. Additionally, we have to find jus-
tifications for the observations, that is why we include for every action two
rules

action a(T) :- allow action a(T), not neg action a(T),
time(T), T<n, T<i.

neg action c(T) :- not action a(T), time(T), T<n, T<i.

These rules can generate occurrences of actions up to the latest observa-
tion, occurring at time ti.

The prediction itself is translated as:

predicted :- fluent f1(T), . . ., fluent fn(T), time(T), T ≥ i.

The query does not necessarily need to specify a point of time, if this part
is omitted, the translation includes the upper time bound tn instead of ti.

3.3 Differences, Advantages and

Disadvantages

The major difference between the two translations π1 and π2 is in the use
of a meta language in translation π1 and the more direct approach used in
translation π2.

The use of a meta language allows to use variables as placeholders for
fluents and actions. That can efficiently be used to reduce the number of
rules of the ungrounded logic program, for example, when specifying the
rules describing the frame axioms. It might also improve readability of the
translation, because it is straightforward to see which actions and fluents are
declared and there is not an extensive amount of additional more cryptic
rules. Due to the use of a meta language the translation π1 allows to use
brackets in fluent and action names which can be used to parameterise these
fluents and actions.

On the other hand, more complex rules like an allowance rule is hardly
readable due to the intensive nesting of meta predicates.

The second translation however reduces the nesting and especially the
number of variables to a minimum. The only sort of variables left are those
representing time, which are necessary to apply the rules to all points of
time. This reduction of variables might increase the number of rules of the
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ungrounded logic program with variables, because for every fluent and every
action the rules have to be written down explicitly. Especially when declaring
fluents the translation is more complex than the first one and it is not straight
forward to see which actions and fluents are actually declared. This fact
might be disadvantageous when errors in the knowledge base, which are due
to spelling mistakes, are tried to be resolved.

The main advantage of the second translation is its minimal use of vari-
ables. Before the solutions of the translations of the knowledge base and the
queries can be computed, the logic program with variables as given by the
translation has to be grounded, to obtain a logic program without variables.
When using the program smodels answer sets can only be computed for
programs without variables. This grounding is done by lparse.

The grounded programs of both translations, however, will have approx-
imately the same number of rules. That means, the only time saving effects
could be observed when the programs are grounded. But since the biological
examples are usually not very large, this effect is hardly noticeable.

3.4 BioNetReasoning Tool

Part of this thesis was the implementation of a tool which helps to process
the information provided as knowledge base and as observations, to evaluate
the queries. The BioNetReasoning Tool can be downloaded from the website
of the Max Planck Institute for Molecular Plant Physiology.

This tool provides some keywords which allow to specify expressions of
the action language defined in Chapter 2.

The syntax of this tool is explained in the next section. To highlight
expressions which can be processed by the tool, a typewriter font is used.

It is a command line Java application which was developed under the
1.4.2 Java version. It provides several command line arguments to set the
maximal time bound, to choose the type of query, i.e. explanation, prediction
or planning, to restrict the number of solutions, to chose the translation,
either π1 or π2, and to specify one or more files containing the knowledge
base, the observations and the queries.

3.4.1 Syntax

The syntax of the knowledge base is very close to the syntax of the action
language defined in Chapter 2. But it also has to assure that it can be
unambiguously parsed, to allow automated translation into logic programs.
Since the syntax of the knowledge base is very clear and brief it is relatively
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easy to write and read and to find errors in both syntax and semantics.
Table 3.4.1 lists the corresponding expressions of the action language and
the expression provided by the tool.

expression CTAID Tool

fluent f <fluent> f

action a <action> a

dynamic causal
law

(a causes f1, . . . ,fn if g1,
. . ., gm)

a <causes> f1,. . ., fn

<if> g1,. . ., gm

(a causes f1, . . . ,fn) a <causes> f1,. . ., fn

static causal
law

(f1, . . . ,fn if g1, . . . , gm) f1,. . ., fn <if> g1,. . ., gm

triggering rule (f1, . . . , fn triggers a) f1,. . ., fn <triggers> a

allowance rule (f1, . . . ,fn allows a) f1,. . ., fn <allows> a

inhibition rule (f1, . . . ,fn inhibits a) f1,. . ., fn <inhibits> a

default rule (default f) <default> f

no-concurrency
constraint

(noconcurrency a1, . . . ,
an)

<noconcurrency> a1,. . .,

an

fluent observa-
tion

(f at ti) f <at> i

action observa-
tion

(a occurs at ti) a <occurs at> i

plan (D, O) |= f1, . . . , fn <plan> f1,. . ., fn

prediction (D, O) |= f1, . . . , fn <predict> f1,. . ., fn

explanation (D, O) |= true

Table 3.1: Correlation between action language CTAID syntax and the Bio-
NetReasoning tool syntax

In general keywords like “causes”, “if”, “at”, “triggers” and so on are en-
closed in angle brackets (”< . . . >”). Furthermore are there some restrictions
to the characters allowed in names of fluents and actions. Not allowed are
among others: spaces, brackets of all kinds and minus signs as part of fluent
and action names. When translation π1 is used round brackets can be part
of fluent and action names.
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Fluents and actions

Both fluents and actions should be declared before they are used in laws
and constraints, although it is not necessary for the correct translation it
certainly eases the readability and the process of designing the knowledge
base.

3.4.2 Design strategy

The knowledge base has to be carefully and thoroughly designed. Besides the
syntax also the semantics have to be understood properly to avoid unwanted
side effects.

When modelling a biological system, a strategy which helps to find a
model describing the behaviour appropriately, could be the following:

1. Identifying fluents and actions

• fluents are for example: changing concentrations, a gene that is
active or inactive, etc.

• actions influence fluents, e.g.: chemical reactions, protein trans-
port, etc.

A fluent could also represent a complete sub-pathway, like a sulfur
assimilation pathway, and an action could be used to describe whether
it is active or inactive, e.g. the pathway is only active as long as the
action is not inhibited

2. Determining the dynamic causal relationships, that is, which action
influences which fluents under which conditions.

As an example let us consider the action “increase concentration”, this
action will result in a medium high level of the concentration provided
that the level of concentration is low, if on the other hand there is
already a medium high level of concentration the action will result in a
high level. This could be expressed by using the following two dynamic
causal laws:

increase_concentration <causes> medium_concentration <if>
low_concentration

increase_concentration <causes> high_concentration <if>
medium_concentration

3. Determining the causal relationships and dependencies between fluents,
which can be expressed using static causal laws.
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4. Besides the dynamic causal laws, used to describe what the effect of
an action is, there are other rules used to express when an action can
occur.

If an action has to occur under certain conditions and if the depen-
dencies are known, a triggering rule is used, because a triggering rule
states that the action will occur if the conditions hold and it will occur
immediately.

On the other hand if an action can only occur if certain conditions
hold, but it does not have to happen immediately or if there is a choice
whether it happens or not, an allowance rule is used. This choice
might be used to model alternative pathways, or to express incomplete
knowledge about the reasons for the occurrence of an action.

Every action, for which no triggering or allowance rule is specified, can
happen at all times.

5. Specifying the behaviour of the fluents is necessary to determine the
current value of every fluent. Usually an action changes the value of a
fluent, the fluent will maintain this value until another action changes
its value again. But there might be exceptions, if there is a fluent with
a default value which can only be changed for a short time by an action.

increase_energy <causes> high_energy <default> -high_energy

6. The inhibition of actions is a very important point. Such an inhibition
could be considered to be an action, which takes place under certain
conditions and has effects on fluents. But more natural and elegantly,
it is an effect of a combination of some fluents on the executability of
actions, without involving an additional action. This can be expressed
using inhibition rules.

A combination of triggering, default and inhibition rules can for exam-
ple be used to express the inhibition of a sub-pathway. In the following
little example the sulfur assimilation pathway (”assimilated sulfur”) is
active at the beginning. While it is active it triggers itself and stays
active until the pathway is inhibited. Since now the action “assimi-
late sulfur” is stopped the fluent “assimilated sulfur” falls back to its
default value, which causes the whole pathway to be inactive.

<default> -assimilated_sulfur
assimilated_sulfur <at> 0
assimilated_sulfur <triggers> assimilate_sulfur
assimilate_sulfur <causes> assimilated_sulfur
sulfur_deficiency <inhibits> assimilate_sulfur
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7. Concurrency is a main feature of biological networks. If reactions can-
not happen concurrently it might be due to shared resources or maybe
mutual exclusive environmental conditions. All these combinations of
actions that cannot happen concurrently have to be explicitly stated
using no-concurrency constraints. If all actions should happen sequen-
tially

<noconcurrency> all

can be used as a shortcut. Normally this will not be very useful for
biological networks, especially when triggers are used, it is often not
possible to execute them one after the other.

8. As much additional information as possible should be included. For ex-
ample observations about the initial state, but also about other states
and occurrences of actions. The more information is provided the
smaller is the number of possible solutions.



Chapter 4

Biological Example

In this chapter we will present a larger biological network and show how it
can be modelled using action languages. It is an extended version of the
sulfur starvation response-pathway of Arabidopsis thaliana. The example
was taken from [12, 13].

Often, such networks are represented as graphs, which ease the under-
standing. But graphs of biological network are often ambiguous, e.g. arrows
from several compounds to another compound, could represent a complex
interaction of several compounds or it could simply mean, that several com-
pounds can influence this particular compound independently. Additional
explanations are necessary.

The representation as a domain description is unambiguous, although
there are usually several ways to express one thing. A complex interaction is
represented by several preconditions in triggering and allowance rules and in
the dynamic causal laws, in other cases there might be several independent
dynamic causal laws.

Because of its size, the example network is split into two parts, which
are shown in Figure 4.1 and Figure 4.2. To ease the understanding of the
diagrams fluents are enclosed by rectangles, actions are not. Arrows from
actions to fluents represent dynamic causal laws and arrows from fluents to
actions represent triggering or allowance rules. Lines with a bar at the end
represent an inhibition relation. Additional information about default values
or observations is not included in the diagrams.

The first part of the sulfur starvation response-pathway shows how the
formation of enhanced lateral roots can be influenced, i.e. how the formation
can be induced or inhibited. As already explained in Section 1.1, sulfur is
an essential nutrient for plants. If the amount of sulfur is not sufficient to
guarantee the plants survival, it can either form additional lateral roots, to
access new sources of sulfur or, if this is not successful, it can use its resources
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Figure 4.1: Sulfur starvation response-pathway, part I.
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for the next generation and produce seeds.

Now we will analyse how this knowledge can be expressed using action
description languages. The complete domain description and possible ob-
servations and queries are shown in Listing 4.1. The next paragraphs will
always refer to this listing.

The first step is to define the alphabet by declaring all fluents and actions,
as shown in Line 3 to 29. We introduce the fluents reduced_sulfur and
further_reduced_sulfur, both express the knowledge that the sulfur level is
low. They are used here to distinguish the start and the end of the first part
of the network. The end of the first part is at the same time the start of the
second part of the network.

Afterwards, we can start to express the causal relationships between flu-
ents and actions using dynamic causal laws and static causal laws, see Line
32 to 50. The design decisions were already explained in Chapter 2. Observe,
that only the first dynamic causal law includes preconditions. It might be
useful to extend some of the dynamic causal laws, for example by the pre-
condition reduced_sulfur. But that would only express the fact, that the
action has no effect, if it occurs. Usually we want to express, that the action
cannot occur at all.

Whether an action can or cannot occur is determined by the allowance,
triggering and inhibition rules given in Line 54 to 75. For most of the actions
triggering rules should be declared to minimise the number of solutions of
the following queries, especially if the preconditions for the occurrence of the
action are well known and if there is no choice, e.g. of an alternative pathway.
Lines 59 to 69 show the triggering rules declared for this network.

However, if not all preconditions for the occurrence of an action are known
or if they are not part of the model, the occurrence of the action should be
restricted using allowance rules, as in Line 54 to Line 56. Another situation
in which an allowance rule should be used is the choice of an alternative
pathway. For example, it is known that the concentration of serine will
increase if the level of sulfur is low, but additionally it is possible that the
catabolism of glucosinolate is induced. Both pathways eventually induce the
expression of IAA28. This is expressed by the allowance rule in Line 55.

In this example there is only one explicit inhibition relation, the one
between expressed IAA28 and the genes which induce auxin, see Line 72. All
other rules in Line 73 to 75 are implicit, preventing unnecessary occurrences
of allowed actions.

Except for the auxin inducing genes and the enhanced lateral roots, all
fluents are inertial. However, these two fluents have a default value of false,
Line 78 and 79, to assure the correct inhibition by IAA28.
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Listing 4.1: Part I of the biological example

1 % knowledge base

2

3 <fluent> normal_sulfur
4 <fluent> reduced_sulfur
5 <fluent> increased_oas
6 <fluent> increased_serine
7 <fluent> increased_tryptophan
8 <fluent> changed_free_ca2_level
9 <fluent> activated_calmodulin

10 <fluent> accumulated_indoleacetonitrile
11 <fluent> over_expressed_nit3
12 <fluent> active_auxin_inducible_genes
13 <fluent> enhanced_lateral_roots
14 <fluent> expressed_iaa28
15 <fluent> further_reduced_sulfur
16

17 <action> sulfur_reduction
18 <action> glucosinolate_catabolism
19 <action> expression_of_nit3
20 <action> increasing_of_oas
21 <action> increasing_of_serine
22 <action> increasing_of_tryptophan
23 <action> surplus_auxin_flux
24 <action> calmodulin_activation
25 <action> iaa28_expression
26 <action> activation_of_auxin_inducible_genes
27 <action> enhanced_lateral_root_formation
28 <action> sulfur_repletion
29 <action> further_sulfur_reduction
30

31 % dynamic causal laws

32 sulfur_reduction <causes> reduced_sulfur <if> normal_sulfur
33 glucosinolate_catabolism <causes> accumulated_indoleacetonitrile
34 increasing_of_oas <causes> increased_oas
35 activation_of_auxin_inducible_genes <causes>

active_auxin_inducible_genes
36 expression_of_nit3 <causes> over_expressed_nit3
37 surplus_auxin_flux <causes> changed_free_ca2_level
38 increasing_of_serine <causes> increased_serine
39 increasing_of_tryptophan <causes> increased_tryptophan
40 calmodulin_activation <causes> activated_calmodulin
41 iaa28_expression <causes> expressed_iaa28
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42 enhanced_lateral_root_formation <causes> enhanced_lateral_roots
43 sulfur_repletion <causes> normal_sulfur
44 further_sulfur_reduction <causes> further_reduced_sulfur
45

46 % static causal laws

47 -normal_sulfur <if> reduced_sulfur
48 -reduced_sulfur <if> normal_sulfur
49 -normal_sulfur <if> further_reduced_sulfur
50 -further_reduced_sulfur <if> normal_sulfur
51

52

53 % allowance rules

54 normal_sulfur <allows> sulfur_reduction
55 reduced_sulfur <allows> glucosinolate_catabolism
56 enhanced_lateral_roots <allows> sulfur_repletion
57

58 % triggering rules

59 reduced_sulfur <triggers> activation_of_auxin_inducible_genes
60 reduced_sulfur <triggers> increasing_of_oas
61 accumulated_indoleacetonitrile <triggers> expression_of_nit3
62 over_expressed_nit3 <triggers> surplus_auxin_flux
63 increased_oas <triggers> increasing_of_serine
64 increased_serine <triggers> increasing_of_tryptophan
65 increased_tryptophan <triggers> surplus_auxin_flux
66 changed_free_ca2_level <triggers> calmodulin_activation
67 activated_calmodulin <triggers> iaa28_expression
68 active_auxin_inducible_genes <triggers>

enhanced_lateral_root_formation
69 expressed_iaa28, reduced_sulfur <triggers> further_sulfur_reduction

70

71 % inhibition rules

72 expressed_iaa28 <inhibits> activation_of_auxin_inducible_genes
73 reduced_sulfur <inhibits> sulfur_reduction
74 accumulated_indoleacetonitrile <inhibits> glucosinolate_catabolism
75 normal_sulfur <inhibits> sulfur_repletion
76

77 % default values

78 <default> -active_auxin_inducible_genes
79 <default> -enhanced_lateral_roots

If the formation of additional lateral roots was not successful, i.e. the
level of sulfur is still low, Arabidopsis thaliana follows a different strategy, it
produces seeds. This subnetwork is shown in Figure 4.2.
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Figure 4.2: Sulfur starvation response-pathway, part II.
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This network does not include all details, for example the assimilation
of energy is a complex pathway by itself. However, here it is represented
by a fluent and an action which can be inhibited. The action is linked to a
fluent with a default value, so that its value automatically falls back to the
default value once the reaction is inhibited. See the default rule in Line 60,
the triggering rule in Line 45, the dynamic causal law in Line 29 and the
inhibition rule in Line 54.

In this example, we have one allowance rule, Line 40, which is introduced
as a choice when and whether the action occurs. All other actions are consid-
ered to be triggered actions. Here, we have triggering rules which are slightly
more complex than before, since they include several preconditions, see Line
49 to 51. Such an action is only triggered when all preconditions hold.

In this example we have four inhibition rules. Three of them can indepen-
dently inhibit the assimilation of energy, Line 54 to 56. The last inhibition
rule, Line 57, is included to avoid the unnecessary occurrence of the allowed
action.

Listing 4.2: Part II of the biological example

1 % knowledge base

2

3 <fluent> further_reduced_sulfur
4 <fluent> decreased_lipids
5 <fluent> assimilated_energy
6 <fluent> faded_metabolism
7 <fluent> seed_production
8 <fluent> decreased_sam
9 <fluent> decreased_chlorophyll

10 <fluent> increased_photorespiration
11 <fluent> imbalanced_nitrogen
12 <fluent> enforced_nucleotide_metabolism
13 <fluent> dumped_c_n
14 <fluent> thf
15

16 <action> decrease_lipids
17 <action> assimilate_energy
18 <action> fading_of_metabolism
19 <action> rescue_reprogramming
20 <action> decrease_sam
21 <action> decrease_chlorophyll
22 <action> increase_photorespiration
23 <action> imbalance_nitrogen
24 <action> enforce_nucleotide_metabolism
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25 <action> dump_c_n
26

27 % dynamic causal laws

28 decrease_lipids <causes> decreased_lipids
29 assimilate_energy <causes> assimilated_energy
30 fading_of_metabolism <causes> faded_metabolism
31 decrease_sam <causes> decreased_sam
32 decrease_chlorophyll <causes> decreased_chlorophyll
33 increase_photorespiration <causes> increased_photorespiration
34 imbalance_nitrogen <causes> imbalanced_nitrogen
35 enforce_nucleotide_metabolism <causes>

enforced_nucleotide_metabolism
36 dump_c_n <causes> dumped_c_n
37 rescue_reprogramming <causes> seed_production
38

39 % allowance rules

40 further_reduced_sulfur <allows> imbalance_nitrogen
41

42 % triggering rules

43 further_reduced_sulfur <triggers> decrease_lipids
44 further_reduced_sulfur <triggers> decrease_sam
45 assimilated_energy <triggers> assimilate_energy
46 decreased_sam <triggers> decrease_chlorophyll
47 decreased_chlorophyll <triggers> increase_photorespiration
48 -assimilated_energy <triggers> fading_of_metabolism
49 increased_photorespiration, enforced_nucleotide_metabolism

<triggers> dump_c_n
50 faded_metabolism, dumped_c_n <triggers> rescue_reprogramming
51 imbalanced_nitrogen, decreased_sam <triggers>

enforce_nucleotide_metabolism
52

53 % inhibition rules

54 decreased_lipids <inhibits> assimilate_energy
55 decreased_chlorophyll <inhibits> assimilate_energy
56 increased_photorespiration <inhibits> assimilate_energy
57 imbalanced_nitrogen <inhibits> imbalance_nitrogen
58

59 % default values

60 <default> -assimilated_energy
61 <default> thf
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4.1 Queries of interest

In this section we will use the domain descriptions given in the previous
section to evaluate the domain descriptions and to infer knowledge using
observations made for example during an experiment. The queries refer to
the entire domain description, i.e. to the combination of Listing 4.1 and 4.2.

Query: Prediction 1

Let us consider the following example, which predicts the behaviour of the
biological system.

Listing 4.3: Query 1 of the biological example

1 % fluent observations

2 normal_sulfur <at> 0
3 -increased_oas <at> 0
4 -increased_serine <at> 0
5 -increased_tryptophan <at> 0
6 -changed_free_ca2_level <at> 0
7 -activated_calmodulin <at> 0
8 -expressed_iaa28 <at> 0
9 -accumulated_indoleacetonitrile <at> 0

10 -over_expressed_nit3 <at> 0
11 -active_auxin_inducible_genes <at> 0
12 -enhanced_lateral_roots <at> 0
13 -reduced_sulfur <at> 0
14 -further_reduced_sulfur <at> 0
15 -decreased_lipids <at> 0
16 assimilated_energy <at> 0
17 -faded_metabolism <at> 0
18 -seed_production <at> 0
19 -decreased_sam <at> 0
20 -decreased_chlorophyll <at> 0
21 -increased_photorespiration <at> 0
22 -imbalanced_nitrogen <at> 0
23 -enforced_nucleotide_metabolism <at> 0
24 -dumped_c_n <at> 0
25 thf <at> 0
26

27 % action observations

28 sulfur_reduction <occurs_at> 0
29

30 % queries
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31 <predict> expressed_iaa28

Line 2 to 25 show possible fluent observations about the initial, describing
the situation when the sulfur level is still normal. Additionally we include
the observation, that the sulfur level was reduced, Line 28. The query in
Line 31 is used to ask, whether it can be assumed, that IAA28 is always
expressed.

A possible answer to this query could be:

1 Time bound: 8
2 Prediction is true in all answer sets: Yes
3 Prediction is true in at least one answer set: Yes

This prediction holds in all trajectory models, if the time bound is high
enough, i.e. n > 6. This is obvious, since once the sulfur level is low, there is
a sequence of triggered actions inducing expressed_iaa28.

If we choose a time bound of n = 6, expressed_iaa28 can still hold,
since there is an alternative pathway via glucosinolate_catabolism. This
alternative pathway includes a choice, which means the prediction does not
hold in all trajectory models.

1 Time bound: 6
2 Prediction is true in all answer sets: No
3 Prediction is true in at least one answer set: Yes

Query: Explanation 1

In this example we assume, that we observed the expression of IAA28 and
we are looking for an explanation for this behaviour. We might formulate
our observations in the following way.

Listing 4.4: Query 2 of the biological example

1 % fluent observations

2 normal_sulfur <at> 0
3 -increased_oas <at> 0
4 -increased_serine <at> 0
5 -increased_tryptophan <at> 0
6 -changed_free_ca2_level <at> 0
7 -activated_calmodulin <at> 0
8 -expressed_iaa28 <at> 0
9 -accumulated_indoleacetonitrile <at> 0

10 -over_expressed_nit3 <at> 0
11 -active_auxin_inducible_genes <at> 0
12 -enhanced_lateral_roots <at> 0
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13 -reduced_sulfur <at> 0
14 -further_reduced_sulfur <at> 0
15 -decreased_lipids <at> 0
16 assimilated_energy <at> 0
17 -faded_metabolism <at> 0
18 -seed_production <at> 0
19 -decreased_sam <at> 0
20 -decreased_chlorophyll <at> 0
21 -increased_photorespiration <at> 0
22 -imbalanced_nitrogen <at> 0
23 -enforced_nucleotide_metabolism <at> 0
24 -dumped_c_n <at> 0
25 thf <at> 0
26

27 expressed_iaa28 <at> 6
28

29 % action observations

30 sulfur_reduction <occurs_at> 0

The fluent observations about the initial state are given in Line 2 to 25.
Our observation of the expressed IAA28 is included as a single observation
given in Line 27.

Since our last observation is at time t = 6, we might use this as an upper
time bound for computing possible explanations. One possible explanation
is

1 sulfur_reduction <occurs_at> 0, 4
2 glucosinolate_catabolism <occurs_at> 1
3 (expression_of_nit3 <occurs_at> 2, 3, 4, 5, 6)
4 (assimilate_energy <occurs_at> 0, 1, 2, 3, 4, 5, 6)
5 (activation_of_auxin_inducible_genes <occurs_at> 1, 2, 3, 5)
6 (enhanced_lateral_root_formation <occurs_at> 2, 3, 4, 6)
7 sulfur_repletion <occurs_at> 3
8 (increasing_of_oas <occurs_at> 1, 2, 3, 5, 6)
9 (increasing_of_serine <occurs_at> 2, 3, 4, 5, 6)

10 (increasing_of_tryptophan <occurs_at> 3, 4, 5, 6)
11 (surplus_auxin_flux <occurs_at> 3, 4, 5, 6)
12 (calmodulin_activation <occurs_at> 4, 5, 6)
13 (further_sulfur_reduction <occurs_at> 6)
14

15 (iaa28_expression <occurs_at> 5, 6)

The actions listed in brackets are triggered actions, the actions listed
without brackets are allowed actions. To ease the reading of the listing, the
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times at which the actions occur are given as a list of time points, instead of
writing one line for every occurrence.

The last line of the listing shows, that these action occurrences are indeed
an explanation for our fluent observation expressed_iaa28.

For the chosen time bound, there are altogether eight possible explana-
tions, only varying in the occurrences of the actions sulfur_repletion and
sulfur_reduction. Obviously, the higher the time bound, the more explana-
tions there are.

Query: Plan 1

Now, we want to find out, how we have to influence the system, to assure
that we get expressed_iaa28. This can be done by computing a plan. The
following listing describes the initial situation, where the sulfur level is still
normal.

Listing 4.5: Query 3 of the biological example

1 % fluent observations

2 normal_sulfur <at> 0
3 -increased_oas <at> 0
4 -increased_serine <at> 0
5 -increased_tryptophan <at> 0
6 -changed_free_ca2_level <at> 0
7 -activated_calmodulin <at> 0
8 -expressed_iaa28 <at> 0
9 -accumulated_indoleacetonitrile <at> 0

10 -over_expressed_nit3 <at> 0
11 -active_auxin_inducible_genes <at> 0
12 -enhanced_lateral_roots <at> 0
13 -reduced_sulfur <at> 0
14 -further_reduced_sulfur <at> 0
15 -decreased_lipids <at> 0
16 assimilated_energy <at> 0
17 -faded_metabolism <at> 0
18 -seed_production <at> 0
19 -decreased_sam <at> 0
20 -decreased_chlorophyll <at> 0
21 -increased_photorespiration <at> 0
22 -imbalanced_nitrogen <at> 0
23 -enforced_nucleotide_metabolism <at> 0
24 -dumped_c_n <at> 0
25 thf <at> 0
26
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27 <plan> expressed_iaa28

The smallest time bound for which we find an plan is n = 6. For this
time bound there are eight possible plans. These plans correspond to the
explanations found by the previous query. Usually this is not the case, since
we would normally include additional observations when we are looking for
an explanation, to restrict which trajectory models are possible.

We find, for example, the following plan:

1 sulfur_reduction <occurs_at> 0
2 glucosinolate_catabolism <occurs_at> 1
3 (iaa28_expression <occurs_at> 5, 6)
4 (enhanced_lateral_root_formation <occurs_at> 2, 3, 4, 5, 6)
5 (assimilate_energy <occurs_at> 0, 1, 2, 3, 4, 5, 6)
6 (activation_of_auxin_inducible_genes <occurs_at> 1, 2, 3, 4, 5)
7 (calmodulin_activation <occurs_at> 4, 5, 6)
8 (surplus_auxin_flux <occurs_at> 3, 4, 5, 6)
9 (increasing_of_tryptophan <occurs_at> 3, 4, 5, 6)

10 (increasing_of_serine <occurs_at> 2, 3, 4, 5, 6)
11 (increasing_of_oas <occurs_at> 1, 2, 3, 4, 5, 6)
12 (expression_of_nit3 <occurs_at> 2, 3, 4, 5, 6)
13 (further_sulfur_reduction <occurs_at> 6)

Query: Prediction 2

In the following three examples, we will focus on a different fluent, to deepen
the understanding of the different kinds of queries.

In this example, we are interested in the question, whether we can predict
the production of seeds if we know that IAA28 is expressed. The observations
are shown in the following listing.

Listing 4.6: Query 4 of the biological example

1 % fluent observations

2 -normal_sulfur <at> 0
3 -increased_oas <at> 0
4 -increased_serine <at> 0
5 -increased_tryptophan <at> 0
6 -changed_free_ca2_level <at> 0
7 -activated_calmodulin <at> 0
8 -expressed_iaa28 <at> 0
9 -accumulated_indoleacetonitrile <at> 0

10 -over_expressed_nit3 <at> 0
11 -active_auxin_inducible_genes <at> 0
12 -enhanced_lateral_roots <at> 0
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13 reduced_sulfur <at> 0
14 -further_reduced_sulfur <at> 0
15 -decreased_lipids <at> 0
16 assimilated_energy <at> 0
17 -faded_metabolism <at> 0
18 -seed_production <at> 0
19 -decreased_sam <at> 0
20 -decreased_chlorophyll <at> 0
21 -increased_photorespiration <at> 0
22 -imbalanced_nitrogen <at> 0
23 -enforced_nucleotide_metabolism <at> 0
24 -dumped_c_n <at> 0
25 thf <at> 0
26

27 expressed_iaa28 <at> 11
28

29 % queries

30 <predict> seed_production

Observe the observation given in Line 27, it expresses the knowledge that
IAA28 was expressed, it is not the earliest possible point of time for this
expression.

The prediction will have the following outcome for a time bound n > 10:

1 Prediction is true in all answer sets: No
2 Prediction is true in at least one answer set: Yes

Obviously, it is possible that the current setting induces the production
of seeds, but there are still other possible outcomes, since it may be that the
formation of lateral roots helps to normalise the level of sulfur.

Query: Explanation 2

Consider the following observations, for which we are trying to find an ex-
planation:

Listing 4.7: Query 5 of the biological example

1 % fluent observations

2 -normal_sulfur <at> 0
3 reduced_sulfur <at> 0
4 -increased_oas <at> 0
5 -increased_serine <at> 0
6 -increased_tryptophan <at> 0
7 -changed_free_ca2_level <at> 0
8 -activated_calmodulin <at> 0
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9 -expressed_iaa28 <at> 0
10 -accumulated_indoleacetonitrile <at> 0
11 -over_expressed_nit3 <at> 0
12 -active_auxin_inducible_genes <at> 0
13 -enhanced_lateral_roots <at> 0
14 -sulfur_deficiency <at> 0
15 -decreased_lipids <at> 0
16 assimilated_energy <at> 0
17 -faded_metabolism <at> 0
18 -seed_production <at> 0
19 assimilated_sulfur <at> 0
20 -decreased_sam <at> 0
21 -decreased_chlorophyll <at> 0
22 -increased_photorespiration <at> 0
23 -imbalanced_nitrogen <at> 0
24 -enforced_nucleotide_metabolism <at> 0
25 -dumped_c_n <at> 0
26 thf <at> 0
27

28 expressed_iaa28 <at> 6
29 faded_metabolism <at> 11
30

31 -sulfur_repletion <occurs_at> 2
32 -sulfur_repletion <occurs_at> 3
33 -sulfur_repletion <occurs_at> 4
34 -sulfur_repletion <occurs_at> 5

The fluent observations in Line 2 to 26 specify the same initial state as
before. But now we include additional observations. For example we know
that sulfur was not repleted, this is expressed by the action observations in
Line 31 to 34. Additionally we also observed that IAA28 was expressed at
the earliest point of time and that the metabolism faded at a later point of
time, Line 28 and 29.

Among others we get the following explanation:

1 imbalance_nitrogen <occurs_at> 6
2 (increase_photorespiration <occurs_at> 8, 9,10, 11)
3 (decrease_chlorophyll <occurs_at> 7, 8, 9, 10, 11)
4 (decrease_lipids <occurs_at> 6, 7, 8, 9, 10, 11)
5 glucosinolate_catabolism <occurs_at> 0
6 (iaa28_expression <occurs_at> 4, 5, 6, 7, 8, 9, 10, 11)
7 (further_sulfur_reduction <occurs_at> 5, 6, 7, 8, 9, 10, 11)
8 (enhanced_lateral_root_formation <occurs_at> 1, 2, 3, 4, 5)
9 (decrease_sam <occurs_at> 6, 7, 8, 9, 10, 11)
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10 (dump_c_n <occurs_at> 9, 10, 11)
11 (fading_of_metabolism <occurs_at> 8, 9, 10, 11)
12 (enforce_nucleotide_metabolism <occurs_at> 7, 8, 9, 10, 11)
13 (assimilate_energy <occurs_at> 0, 1, 2, 3, 4, 5, 6)
14 (activation_of_auxin_inducible_genes <occurs_at> 0, 1, 2, 3, 4)
15 (calmodulin_activation <occurs_at> 3, 4, 5, 6, 7, 8, 9, 10, 11)
16 (surplus_auxin_flux <occurs_at> 2, 3, 4, 5, 6, 7, 8, 9, 10, 11)
17 (increasing_of_tryptophan <occurs_at> 2, 3, 4, 5, 6, 7, 8, 9, 10,

11)
18 (increasing_of_serine <occurs_at> 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,

11)
19 (increasing_of_oas <occurs_at> 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,

11)
20 (expression_of_nit3 <occurs_at> 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11)
21 (rescue_reprogramming <occurs_at> 10, 11)

For a time bound of n = 11 there are only two possible explanations.
They only vary in the point of time at which the imbalance of nitrogen and
consequently also the enforcing of the nucleotide metabolism occurs.

Query: Plan 2

In our last example we will compute a plan, that includes all actions which
will lead to the production of seeds, when we already have a reduced level of
sulfur. This knowledge is expressed by the fluent observations in the listing
below.

Listing 4.8: Query 6 of the biological example

1 % fluent observations

2 -normal_sulfur <at> 0
3 reduced_sulfur <at> 0
4 -increased_oas <at> 0
5 -increased_serine <at> 0
6 -increased_tryptophan <at> 0
7 -changed_free_ca2_level <at> 0
8 -activated_calmodulin <at> 0
9 -expressed_iaa28 <at> 0

10 -accumulated_indoleacetonitrile <at> 0
11 -over_expressed_nit3 <at> 0
12 -active_auxin_inducible_genes <at> 0
13 -enhanced_lateral_roots <at> 0
14 -sulfur_deficiency <at> 0
15 -decreased_lipids <at> 0
16 assimilated_energy <at> 0
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17 -faded_metabolism <at> 0
18 -seed_production <at> 0
19 assimilated_sulfur <at> 0
20 -decreased_sam <at> 0
21 -decreased_chlorophyll <at> 0
22 -increased_photorespiration <at> 0
23 -imbalanced_nitrogen <at> 0
24 -enforced_nucleotide_metabolism <at> 0
25 -dumped_c_n <at> 0
26 thf <at> 0
27

28 <plan> seed_production

The observations given in Line 2 to 26 describe the initial state as the
state in which the level of sulfur is already decreased, but there was not yet
a reaction to the change.

The query itself is straight forward and given in Line 28. It is used
to express the fact, that we are looking for solutions in which the fluent
seed_production has the value true.

The smallest point of time for which we find a plan is n = 11. Even
though there are only four allowed actions out of a total of twenty three
actions, they allow a huge variety of combinations. For the time bound of
n = 11 we find only “8” solutions, but already for a time bound of n = 12
we get “188” possible plans.

One possible plan that leads to the production of seeds is given below.

1 glucosinolate_catabolism <occurs_at> 0
2 (expression_of_nit3 <occurs_at> 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11)
3 (increasing_of_oas <occurs_at> 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,

11)
4 (increasing_of_serine <occurs_at> 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,

11)
5 (increasing_of_tryptophan <occurs_at> 2, 3, 4, 5, 6, 7, 8, 9, 10,

11)
6 (activation_of_auxin_inducible_genes <occurs_at> 0, 1, 2)
7 (enhanced_lateral_root_formation <occurs_at> 1, 2, 3)
8 sulfur_repletion <occurs_at> 2
9 sulfur_reduction <occurs_at> 4

10 (surplus_auxin_flux <occurs_at> 2, 3, 4, 5, 6, 7, 8, 9, 10, 11)
11 (calmodulin_activation <occurs_at> 3, 4, 5, 6, 7, 8, 9, 10, 11)
12 (iaa28_expression <occurs_at> 4, 5, 6, 7, 8, 9, 10,11)
13 (further_sulfur_reduction <occurs_at> 5, 6, 7, 8, 9, 10, 11)
14 imbalance_nitrogen <occurs_at> 6
15 (decrease_lipids <occurs_at> 6, 7, 8, 9, 10, 11)
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16 (assimilate_energy <occurs_at> 0, 1, 2, 3, 4, 5, 6)
17 (fading_of_metabolism <occurs_at> 8, 9, 10, 11)
18 (decrease_sam <occurs_at> 6, 7, 8, 9, 10, 11)
19 (decrease_chlorophyll <occurs_at> 7, 8, 9, 10, 11)
20 (increase_photorespiration <occurs_at> 8, 9, 10, 11)
21 (enforce_nucleotide_metabolism <occurs_at> 7, 8, 9, 10, 11)
22 (dump_c_n <occurs_at> 9, 10, 11)
23 (rescue_reprogramming at 10, 11)

Analysing the different plans and explanations might help to better un-
derstand such a biological system. Obviously, even such a relatively small
example allows multiple combinations of fluents and actions. The plans and
explanations might show, where this variation comes from.
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