Warum Pflanzen nicht erfrieren

Potsdamer Max-Planck-Forscher entschlüsseln genetische Grundlagen der Frosttoleranz von Pflanzen

12. August 2005

Viele Pflanzen sind in der Lage, ihre Frosttoleranz zu erhöhen, wenn sie längere Zeit kühleren Temperaturen ausgesetzt sind. Bisherige Untersuchungen hatten gezeigt, dass diese Akklimatisierung von komplexen Veränderungen in der Expression von Genen und Gengruppen begleitet ist. Wissenschaftler des Max-Planck-Instituts für molekulare Pflanzenphysiologie in Potsdam haben jetzt erstmals die Aktivität aller Gene einer Pflanze, der Ackerschmalwand, vor und nach einer solchen Kälteanpassung miteinander verglichen. Dabei stellte sich heraus, dass sich dabei die Expression bei über 2.000 Genen signifikant verändert. Dieser Vergleich legt erstmals offen, welche Prozesse in Pflanzen bei der Vorbereitung auf die Überwinterung dominieren (PloS Genetics, 11. August 2005).

Eingefrorene Arabidopsis-Pflanze. Diese Pflanze wurde unter speziellen Laborbedingungen eingefroren. Arabidopsis ist aber auch in der Lage, unter natürlichen Bedingungen im Freiland zu überwintern.

Frosttoleranz ist für Pflanzen in gemäßigten und kalten Klimazonen ein wichtiger Faktor, der die geographische Verbreitung einer Art entscheidend mitbestimmt. In der Landwirtschaft führen Frosteinbrüche darüber hinaus immer wieder zu katastrophalen Ernteverlusten. Doch der klassischen Pflanzenzüchtung ist es bisher nicht gelungen, die Frosttoleranz wichtiger Kulturpflanzen entscheidend zu verbessern. Dies liegt vor allem daran, dass die Frosttoleranz ein komplexes, quantitatives Merkmal von Pflanzen ist, das keinem einfachen Mendelschen Vererbungsschema folgt.

Zudem sind viele Pflanzen der gemäßigten Breiten in der Lage, während einer Akklimatisierungsphase von mehreren Tagen bis Wochen bei Temperaturen knapp über dem Gefrierpunkt ihre Frosttoleranz deutlich zu erhöhen. In der Natur findet dieser Prozess im Herbst statt und bereitet die Pflanzen auf des Überleben im Winter vor.

Diese Akklimatisierungsfähigkeit ist seit langem bekannt und die ihnen zugrunde liegenden physiologischen und genetischen Mechanismen wurden vielfach untersucht. Dennoch war bisher unbekannt, wie viele und welche Gene an der Akklimatisierung einer Pflanze an niedrige Temperaturen beteiligt sind. Wissenschaftler des Max-Planck-Instituts für molekulare Pflanzenphysiologie haben deshalb die Expression aller Gene von Arabidopsis thaliana, der Ackerschmalwand, mit Hilfe spezieller "Microarray"-Techniken untersucht. Diese erlauben es inzwischen, die Aktivität aller Gene eines Organismus in einer einzigen Messung zu bestimmen.

Arabidopsis ist einer der wichtigsten pflanzlichen Modellorganismen und zeigt eine gute Kälteakklimatisierung. Da das Genom dieser Pflanze vollständig sequenziert ist, eignet sie sich besonders gut für Experimente, bei denen die globale Regulation der Genexpression untersucht wird.

Analyse der Änderungen der Genexpression in Arabidopsis thaliana während der Kälteakklimatisierung. Die Gene sind graphisch einzelnen Stoffwechselwegen zugeordnet. Dies geschieht automatisch mit der am Max-Planck-Institut für molekulare Pflanzenphysiologie entwickelten Software MAPMAN. Blau markierte Gene wurden nach der Akklimatisierung verstärkt, rot markierte Gene hingegen weniger stark exprimiert.

Bei den Untersuchungen zeigte sich, dass nach einer Akklimatisierung von 14 Tagen bei 4 Grad Celsius sich die Expression bei mehr als 2.000 Genen signifikant veränderte (s. Abb. 2). Das sind fast zehn Prozent aller untersuchten Gene. Die Zuordnung der identifizierten Gene zu funktionellen Gruppen erlaubt nun Rückschlüsse auf wichtige, bisher nicht identifizierte physiologische Anpassungsmechanismen.

Diese Informationen sind nicht nur wichtig, um die Anpassung von Pflanzen an natürliche Winterbedingungen besser zu verstehen, sondern auch, um die Frosttoleranz von Nutzpflanzen züchterisch gezielt verbessern zu können.

Zur Redakteursansicht